TY - JOUR
T1 - Association of Prenatal Exposure to Endocrine-Disrupting Chemicals with Liver Injury in Children
AU - Midya, Vishal
AU - Colicino, Elena
AU - Conti, David V.
AU - Berhane, Kiros
AU - Garcia, Erika
AU - Stratakis, Nikos
AU - Andrusaityte, Sandra
AU - Basagaña, Xavier
AU - Casas, Maribel
AU - Fossati, Serena
AU - Gražulevičienė, Regina
AU - Haug, Line Småstuen
AU - Heude, Barbara
AU - Maitre, Léa
AU - McEachan, Rosemary
AU - Papadopoulou, Eleni
AU - Roumeliotaki, Theano
AU - Philippat, Claire
AU - Thomsen, Cathrine
AU - Urquiza, Jose
AU - Vafeiadi, Marina
AU - Varo, Nerea
AU - Vos, Miriam B.
AU - Wright, John
AU - McConnell, Rob
AU - Vrijheid, Martine
AU - Chatzi, Lida
AU - Valvi, Damaskini
N1 - Publisher Copyright:
© 2022 American Institute of Physics Inc.. All rights reserved.
PY - 2022/7/6
Y1 - 2022/7/6
N2 - Importance: Prenatal exposures to endocrine-disrupting chemicals (EDCs) may increase the risk for liver injury in children; however, human evidence is scarce, and previous studies have not considered potential EDC-mixture effects. Furthermore, the association between prenatal EDC exposure and hepatocellular apoptosis in children has not been studied previously. Objective: To investigate associations of prenatal exposure to EDC mixtures with liver injury risk and hepatocellular apoptosis in childhood. Design, Setting, and Participants: This prospective cohort study used data collected from April 1, 2003, to February 26, 2016, from mother-child pairs from the Human Early-Life Exposome project, a collaborative network of 6 ongoing, population-based prospective birth cohort studies from 6 European countries (France, Greece, Lithuania, Norway, Spain, and the UK). Data were analyzed from April 1, 2021, to January 31, 2022. Exposures: Three organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 3 phenols, 4 parabens, 10 phthalates, 4 organophosphate pesticides, 5 perfluoroalkyl substances, and 9 metals. Main Outcomes and Measures: Child serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and CK-18 were measured at 6 to 11 years of age. Risk for liver injury was defined as having ALT, AST, and/or GGT levels above the 90th percentile. Associations of liver injury or cytokeratin 18 (CK-18) levels with each chemical group among the 45 EDCs measured in maternal blood or urine samples collected in pregnancy were estimated using 2 complimentary exposure-mixture methods: bayesian weighted quantile sum (BWQS) and bayesian kernel machine regression. Results: The study included 1108 mothers (mean [SD] age at birth, 31.0 [4.7] years) and their singleton children (mean [SD] age at liver assessment, 8.2 [1.6] years; 598 [54.0%] boys). Results of the BWQS method indicated increased odds of liver injury per exposure-mixture quartile increase for organochlorine pesticides (odds ratio [OR], 1.44 [95% credible interval (CrI), 1.21-1.71]), PBDEs (OR, 1.57 [95% CrI, 1.34-1.84]), perfluoroalkyl substances (OR, 1.73 [95% CrI, 1.45-2.09]), and metals (OR, 2.21 [95% CrI, 1.65-3.02]). Decreased odds of liver injury were associated with high-molecular-weight phthalates (OR, 0.74 [95% CrI, 0.60-0.91]) and phenols (OR, 0.66 [95% CrI, 0.54-0.78]). Higher CK-18 levels were associated with a 1-quartile increase in polychlorinated biphenyls (β, 5.84 [95% CrI, 1.69-10.08] IU/L) and PBDEs (β, 6.46 [95% CrI, 3.09-9.92] IU/L). Bayesian kernel machine regression showed associations in a similar direction as BWQS for all EDCs and a nonlinear association between phenols and CK-18 levels. Conclusions and Relevance: With a combination of 2 state-of-the-art exposure-mixture approaches, consistent evidence suggests that prenatal exposures to EDCs are associated with higher risk for liver injury and CK-18 levels and constitute a potential risk factor for pediatric nonalcoholic fatty liver disease.
AB - Importance: Prenatal exposures to endocrine-disrupting chemicals (EDCs) may increase the risk for liver injury in children; however, human evidence is scarce, and previous studies have not considered potential EDC-mixture effects. Furthermore, the association between prenatal EDC exposure and hepatocellular apoptosis in children has not been studied previously. Objective: To investigate associations of prenatal exposure to EDC mixtures with liver injury risk and hepatocellular apoptosis in childhood. Design, Setting, and Participants: This prospective cohort study used data collected from April 1, 2003, to February 26, 2016, from mother-child pairs from the Human Early-Life Exposome project, a collaborative network of 6 ongoing, population-based prospective birth cohort studies from 6 European countries (France, Greece, Lithuania, Norway, Spain, and the UK). Data were analyzed from April 1, 2021, to January 31, 2022. Exposures: Three organochlorine pesticides, 5 polychlorinated biphenyls, 2 polybrominated diphenyl ethers (PBDEs), 3 phenols, 4 parabens, 10 phthalates, 4 organophosphate pesticides, 5 perfluoroalkyl substances, and 9 metals. Main Outcomes and Measures: Child serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and CK-18 were measured at 6 to 11 years of age. Risk for liver injury was defined as having ALT, AST, and/or GGT levels above the 90th percentile. Associations of liver injury or cytokeratin 18 (CK-18) levels with each chemical group among the 45 EDCs measured in maternal blood or urine samples collected in pregnancy were estimated using 2 complimentary exposure-mixture methods: bayesian weighted quantile sum (BWQS) and bayesian kernel machine regression. Results: The study included 1108 mothers (mean [SD] age at birth, 31.0 [4.7] years) and their singleton children (mean [SD] age at liver assessment, 8.2 [1.6] years; 598 [54.0%] boys). Results of the BWQS method indicated increased odds of liver injury per exposure-mixture quartile increase for organochlorine pesticides (odds ratio [OR], 1.44 [95% credible interval (CrI), 1.21-1.71]), PBDEs (OR, 1.57 [95% CrI, 1.34-1.84]), perfluoroalkyl substances (OR, 1.73 [95% CrI, 1.45-2.09]), and metals (OR, 2.21 [95% CrI, 1.65-3.02]). Decreased odds of liver injury were associated with high-molecular-weight phthalates (OR, 0.74 [95% CrI, 0.60-0.91]) and phenols (OR, 0.66 [95% CrI, 0.54-0.78]). Higher CK-18 levels were associated with a 1-quartile increase in polychlorinated biphenyls (β, 5.84 [95% CrI, 1.69-10.08] IU/L) and PBDEs (β, 6.46 [95% CrI, 3.09-9.92] IU/L). Bayesian kernel machine regression showed associations in a similar direction as BWQS for all EDCs and a nonlinear association between phenols and CK-18 levels. Conclusions and Relevance: With a combination of 2 state-of-the-art exposure-mixture approaches, consistent evidence suggests that prenatal exposures to EDCs are associated with higher risk for liver injury and CK-18 levels and constitute a potential risk factor for pediatric nonalcoholic fatty liver disease.
UR - http://www.scopus.com/inward/record.url?scp=85133957292&partnerID=8YFLogxK
U2 - 10.1001/jamanetworkopen.2022.20176
DO - 10.1001/jamanetworkopen.2022.20176
M3 - Article
C2 - 35793087
AN - SCOPUS:85133957292
SN - 2574-3805
VL - 5
SP - E2220176
JO - JAMA network open
JF - JAMA network open
IS - 7
ER -