TY - JOUR
T1 - Assessment of somatic single-nucleotide variation in brain tissue of cases with schizophrenia
AU - Fullard, John F.
AU - Charney, Alexander W.
AU - Voloudakis, Georgios
AU - Uzilov, Andrew V.
AU - Haroutunian, Vahram
AU - Roussos, Panos
N1 - Publisher Copyright:
© 2019, The Author(s).
PY - 2019/1/1
Y1 - 2019/1/1
N2 - The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, monozygotic twins are discordant for SCZ at a significant rate. Somatic variants—genetic changes that arise after fertilization rather than through germline inheritance—are widespread in the human brain and known to contribute to risk for both rare and common neuropsychiatric conditions. The contribution of somatic variants in the brain to risk of SCZ remains to be determined. In this study, we surveyed somatic single-nucleotide variants (sSNVs) in the brains of controls and individuals with SCZ (n = 10 and n = 9, respectively). From each individual, whole-exome sequencing (WES) was performed on DNA from neuronal and non-neuronal nuclei isolated by fluorescence activated nuclear sorting (FANS) from frozen postmortem prefrontal cortex (PFC) samples, as well as DNA extracted from temporal muscle as a reference. We identified an increased burden of sSNVs in cases compared to controls (SCZ rate = 2.78, control rate = 0.70; P = 0.0092, linear mixed effects model), that included a higher rate of non-synonymous and loss-of-function variants (SCZ rate = 1.33, control rate = 0.50; P = 0.047, linear mixed effects model). Our findings suggest sSNVs in the brain may constitute an additional component of the complex genetic architecture of SCZ. This perspective argues for the need to further investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins and a potential guide to the identification of novel therapeutic targets.
AB - The genetic architecture of schizophrenia (SCZ) includes numerous risk loci across a range of frequencies and sizes, including common and rare single-nucleotide variants and insertions/deletions (indels), as well as rare copy number variants (CNVs). Despite the clear heritability of the disease, monozygotic twins are discordant for SCZ at a significant rate. Somatic variants—genetic changes that arise after fertilization rather than through germline inheritance—are widespread in the human brain and known to contribute to risk for both rare and common neuropsychiatric conditions. The contribution of somatic variants in the brain to risk of SCZ remains to be determined. In this study, we surveyed somatic single-nucleotide variants (sSNVs) in the brains of controls and individuals with SCZ (n = 10 and n = 9, respectively). From each individual, whole-exome sequencing (WES) was performed on DNA from neuronal and non-neuronal nuclei isolated by fluorescence activated nuclear sorting (FANS) from frozen postmortem prefrontal cortex (PFC) samples, as well as DNA extracted from temporal muscle as a reference. We identified an increased burden of sSNVs in cases compared to controls (SCZ rate = 2.78, control rate = 0.70; P = 0.0092, linear mixed effects model), that included a higher rate of non-synonymous and loss-of-function variants (SCZ rate = 1.33, control rate = 0.50; P = 0.047, linear mixed effects model). Our findings suggest sSNVs in the brain may constitute an additional component of the complex genetic architecture of SCZ. This perspective argues for the need to further investigate somatic variation in the brain as an explanation of the discordance in monozygotic twins and a potential guide to the identification of novel therapeutic targets.
UR - http://www.scopus.com/inward/record.url?scp=85060170928&partnerID=8YFLogxK
U2 - 10.1038/s41398-018-0342-0
DO - 10.1038/s41398-018-0342-0
M3 - Article
C2 - 30655504
AN - SCOPUS:85060170928
SN - 2158-3188
VL - 9
JO - Translational Psychiatry
JF - Translational Psychiatry
IS - 1
M1 - 21
ER -