Abstract
In this work, we demonstrate the viability of using our recently developed data analysis procedures for spherical nanoindentation in conjunction with Raman spectroscopy for studying lamellar-level correlations between the local composition and local mechanical properties in mouse bone. Our methodologies allow us to convert the raw load-displacement datasets to much more meaningful indentation stress-strain curves that accurately capture the loading and unloading elastic moduli, the indentation yield points, as well as the post-yield characteristics in the tested samples. Using samples of two different inbred mouse strains, A/J and C57BL/6J (B6), we successfully demonstrate the correlations between the mechanical information obtained from spherical nanoindentation measurements to the local composition measured using Raman spectroscopy. In particular, we observe that a higher mineral-to-matrix ratio correlated well with a higher local modulus and yield strength in all samples. Thus, new bone regions exhibited lower moduli and yield strengths compared to more mature bone. The B6 mice were also found to exhibit lower modulus and yield strength values compared to the more mineralized A/J strain.
Original language | English |
---|---|
Pages (from-to) | 102-117 |
Number of pages | 16 |
Journal | Journal of the Mechanical Behavior of Biomedical Materials |
Volume | 13 |
DOIs | |
State | Published - Sep 2012 |
Externally published | Yes |
Keywords
- Bone
- Nanoindentation
- Raman spectroscopy