Anatomical and functional abnormalities on MRI in kabuki syndrome

Jennifer Boisgontier, Jean Marc Tacchella, Hervé Lemaître, Natacha Lehman, Ana Saitovitch, Vincent Gatinois, Guilaine Boursier, Elodie Sanchez, Elza Rechtman, Ludovic Fillon, Stanislas Lyonnet, Kim Hanh Le Quang Sang, Genevieve Baujat, Marlene Rio, Odile Boute, Laurence Faivre, Elise Schaefer, Damien Sanlaville, Monica Zilbovicius, David GréventDavid Geneviève, Nathalie Boddaert

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

Kabuki syndrome (KS) is a rare congenital disorder (1/32000 births) characterized by distinctive facial features, intellectual disability, short stature, and dermatoglyphic and skeletal abnormalities. In the last decade, mutations in KMT2D and KDM6A were identified as a major cause of kabuki syndrome. Although genetic abnormalities have been highlighted in KS, brain abnormalities have been little explored. Here, we have investigated brain abnormalities in 6 patients with KS (4 males; M age = 10.96 years, SD = 2.97 years) with KMT2D mutation in comparison with 26 healthy controls (17 males; M age = 10.31 years, SD = 2.96 years). We have used MRI to explore anatomical and functional brain abnormalities in patients with KS. Anatomical abnormalities in grey matter volume were assessed by cortical and subcortical analyses. Functional abnormalities were assessed by comparing rest cerebral blood flow measured with arterial spin labeling-MRI. When compared to healthy controls, KS patients had anatomical alterations characterized by grey matter decrease localized in the bilateral precentral gyrus and middle frontal gyrus. In addition, KS patients also presented functional alterations characterized by cerebral blood flow decrease in the left precentral gyrus and middle frontal gyrus. Moreover, subcortical analyses revealed significantly decreased grey matter volume in the bilateral hippocampus and dentate gyrus in patients with KS. Our results strongly indicate anatomical and functional brain abnormalities in KS. They suggest a possible neural basis of the cognitive symptoms observed in KS, such as fine motor impairment, and indicate the need to further explore the consequences of such brain abnormalities in this disorder. Finally, our results encourage further imaging-genetics studies investigating the link between genetics, anatomical and functional brain alterations in KS.

Original languageEnglish
Article number101610
JournalNeuroImage: Clinical
Volume21
DOIs
StatePublished - 2019
Externally publishedYes

Keywords

  • Arterial spin labeling
  • Brodmann area 6 and 9
  • Congenital disorder
  • Hippocampus
  • Kabuki syndrome
  • Voxel-based morphometry

Fingerprint

Dive into the research topics of 'Anatomical and functional abnormalities on MRI in kabuki syndrome'. Together they form a unique fingerprint.

Cite this