TY - JOUR
T1 - An influenza virus hemagglutinin-based vaccine platform enables the generation of epitope specific human cytomegalovirus antibodies
AU - Behzadi, Mohammad Amin
AU - Stein, Kathryn R.
AU - Bermúdez-González, Maria Carolina
AU - Simon, Viviana
AU - Nachbagauer, Raffael
AU - Tortorella, Domenico
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/6
Y1 - 2019/6
N2 - Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%-90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7-13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
AB - Human cytomegalovirus (CMV) is a highly prevalent pathogen with ~60%-90% seropositivity in adults. CMV can contribute to organ rejection in transplant recipients and is a major cause of birth defects in newborns. Currently, there are no approved vaccines against CMV. The epitope of a CMV neutralizing monoclonal antibody against a conserved region of the envelope protein gH provided the basis for a new CMV vaccine design. We exploited the influenza A virus as a vaccine platform due to the highly immunogenic head domain of its hemagglutinin envelope protein. Influenza A variants were engineered by reverse genetics to express the epitope of an anti-CMV gH neutralizing antibody that recognizes native gH into the hemagglutinin antigenic Sa site. We determined that the recombinant influenza variants expressing 7, 10, or 13 residues of the anti-gH neutralizing antibody epitope were recognized and neutralized by the anti-gH antibody 10C10. Mice vaccinated with the influenza/CMV chimeric viruses induced CMV-specific antibodies that recognized the native gH protein and inhibited virus infection. In fact, the influenza variants expressing 7-13 gH residues neutralized a CMV infection at ~60% following two immunizations with variants expressing the 13 residue gH peptide produced the highest levels of neutralization. Collectively, our study demonstrates that a variant influenza virus inserted with a gH peptide can generate a humoral response that limits a CMV infection.
KW - GH envelope protein
KW - Hemagglutinin
KW - Human cytomegalovirus
KW - Humoral immunity
KW - Influenza virus
KW - Neutralization
KW - Vaccine
UR - http://www.scopus.com/inward/record.url?scp=85070766571&partnerID=8YFLogxK
U2 - 10.3390/vaccines7020051
DO - 10.3390/vaccines7020051
M3 - Article
AN - SCOPUS:85070766571
SN - 2076-393X
VL - 7
JO - Vaccines
JF - Vaccines
IS - 2
M1 - 51
ER -