TY - JOUR
T1 - An ESR and HPLC-EC assay for the detection of alkyl radicals
AU - Novakov, C. P.
AU - Feierman, D.
AU - Cederbaum, A. I.
AU - Stoyanovsky, D. A.
PY - 2001
Y1 - 2001
N2 - The correlation of lipid peroxidation with release of alkanes (RH) is considered a noninvasive method for the in vivo evaluation of oxidative stress. The formation of RH is believed to reflect a lipid hydroperoxide (LOOH)-dependent generation of alkoxyl radicals (LO·) that undergo β-scission with release of alkyl radicals (R·). Alternatively, R· could be spin-trapped with a nitrone before the formation of RH and analyzed by ESR. Extracts from the liver and lung of CCl4- and asbestos-treated rats that were previously loaded with nitrones exhibited ESR spectra suggesting the formation of iso-propyl, n-butyl, ethyl, and pentyl radical-derived nitroxides. In biological systems, various nitroxides with indistinguishable ESR spectra could be formed. Hence, experiments with N-tert-butyl-α-phenylnitrone (PBN) for spin trapping of R· were carried out in which the nitroxides formed were separated and analyzed by HPLC with electrochemical detection (EC). The C1-5 homologous series of PBN nitroxides and hydroxylamines were synthesized, characterized by ESR, GC-MS, and HPLC-EC, and used as HPLC standards. For in vivo generation and spin trapping of R·, rats were loaded with CCl4 and PBN. The HPLC-EC chromatograms of liver extracts from CCl4-treated rats demonstrated the formation of both the nitroxide and hydroxylamine forms of PBN/·CCl3, as well as the formation of a series of unidentified PBN nitroxides and hydroxylamines. However, formation of PBN adducts with retention times similar to these of the PBN/C2-5 derivatives was not observed. In conclusion, we could not correlate the production of PBN-detectable alkyl radicals with the reported CCl4-dependent production of C1-5 alkanes. We speculate that the major reason for this is the low steady-state concentrations of R· produced because only a small fraction of LO· undergo β-scission to release R·.
AB - The correlation of lipid peroxidation with release of alkanes (RH) is considered a noninvasive method for the in vivo evaluation of oxidative stress. The formation of RH is believed to reflect a lipid hydroperoxide (LOOH)-dependent generation of alkoxyl radicals (LO·) that undergo β-scission with release of alkyl radicals (R·). Alternatively, R· could be spin-trapped with a nitrone before the formation of RH and analyzed by ESR. Extracts from the liver and lung of CCl4- and asbestos-treated rats that were previously loaded with nitrones exhibited ESR spectra suggesting the formation of iso-propyl, n-butyl, ethyl, and pentyl radical-derived nitroxides. In biological systems, various nitroxides with indistinguishable ESR spectra could be formed. Hence, experiments with N-tert-butyl-α-phenylnitrone (PBN) for spin trapping of R· were carried out in which the nitroxides formed were separated and analyzed by HPLC with electrochemical detection (EC). The C1-5 homologous series of PBN nitroxides and hydroxylamines were synthesized, characterized by ESR, GC-MS, and HPLC-EC, and used as HPLC standards. For in vivo generation and spin trapping of R·, rats were loaded with CCl4 and PBN. The HPLC-EC chromatograms of liver extracts from CCl4-treated rats demonstrated the formation of both the nitroxide and hydroxylamine forms of PBN/·CCl3, as well as the formation of a series of unidentified PBN nitroxides and hydroxylamines. However, formation of PBN adducts with retention times similar to these of the PBN/C2-5 derivatives was not observed. In conclusion, we could not correlate the production of PBN-detectable alkyl radicals with the reported CCl4-dependent production of C1-5 alkanes. We speculate that the major reason for this is the low steady-state concentrations of R· produced because only a small fraction of LO· undergo β-scission to release R·.
UR - http://www.scopus.com/inward/record.url?scp=0034808701&partnerID=8YFLogxK
U2 - 10.1021/tx015507h
DO - 10.1021/tx015507h
M3 - Article
C2 - 11559038
AN - SCOPUS:0034808701
SN - 0893-228X
VL - 14
SP - 1239
EP - 1246
JO - Chemical Research in Toxicology
JF - Chemical Research in Toxicology
IS - 9
ER -