Abstract
Durvalumab is a programmed death-ligand 1 (PD-L1) inhibitor with clinical activity in advanced urothelial cancer (AUC)1. AUC is characterized by several recurrent targetable genomic alterations2–5. This study (NCT02546661, BISCAY) combined durvalumab with relevant targeted therapies in biomarker-selected chemotherapy-refractory AUC populations including: (1) fibroblast growth factor receptor (FGFR) inhibitors in tumors with FGFR DNA alterations (FGFRm); (2) pharmacological inhibitor of the enzyme poly-ADP ribose polymerase (PARP) in tumors with and without DNA homologous recombination repair deficiency (HRRm); and (3) TORC1/2 inhibitors in tumors with DNA alteration to the mTOR/PI3K pathway3–5.This trial adopted a new, biomarker-driven, multiarm adaptive design. Safety, efficacy and relevant biomarkers were evaluated. Overall, 391 patients were screened of whom 135 were allocated to one of six study arms. Response rates (RRs) ranged 9–36% across the study arms, which did not meet efficacy criteria for further development. Overall survival (OS) and progression-free survival (PFS) were similar in the combination arms and durvalumab monotherapy arm. Biomarker analysis showed a correlation between circulating plasma-based DNA (ctDNA) and tissue for FGFRm. Sequential circulating tumor DNA analysis showed that changes to FGFRm correlated with clinical outcome. Our data support the clinical activity of FGFR inhibition and durvalumab monotherapy but do not show increased activity for any of the combinations. These findings question the targeted/immune therapy approach in AUC.
Original language | English |
---|---|
Pages (from-to) | 793-801 |
Number of pages | 9 |
Journal | Nature Medicine |
Volume | 27 |
Issue number | 5 |
DOIs | |
State | Published - May 2021 |
Access to Document
Fingerprint
Dive into the research topics of 'An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer. / Powles, Thomas; Carroll, Danielle; Chowdhury, Simon et al.
In: Nature Medicine, Vol. 27, No. 5, 05.2021, p. 793-801.Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - An adaptive, biomarker-directed platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer
AU - Powles, Thomas
AU - Carroll, Danielle
AU - Chowdhury, Simon
AU - Gravis, Gwenaelle
AU - Joly, Florence
AU - Carles, Joan
AU - Fléchon, Aude
AU - Maroto, Pablo
AU - Petrylak, Daniel
AU - Rolland, Frédéric
AU - Cook, Natalie
AU - Balar, Arjun V.
AU - Sridhar, Srikala S.
AU - Galsky, Matthew D.
AU - Grivas, Petros
AU - Ravaud, Alain
AU - Jones, Robert
AU - Cosaert, Jan
AU - Hodgson, Darren
AU - Kozarewa, Iwanka
AU - Mather, Richard
AU - McEwen, Robert
AU - Mercier, Florence
AU - Landers, Dónal
N1 - Funding Information: T.P. has received research funding from AstraZeneca, Astellas, Bristol-Myers Squibb, Roche and Merck; and received honoraria for lectures or advisory boards from AstraZeneca, Astellas, Bristol-Myers Squibb, Roche, Merck, Johnson & Johnson, Ipsen, Exelixis, Pfizer, Novartis and Seattle Genetics. D.C. is a full-time employee at AstraZeneca and owns stocks/shares in AstraZeneca. S.C. has held advisory roles for Astellas Pharma, Bayer, Beigene, Clovis Oncology, Janssen-Cilag, and Pfizer; participated in speakers’ bureaux for Pfizer; received honoraria from Clovis Oncology and Novartis; received research funding from Clovis Oncology and Sanofi/Aventis; and received travel expenses from Beigene and Clovis Oncology. G.G. has received travel expenses for symposia from Bristol-Myers Squibb, Sanofi, Astellas, Ipsen, Janssen and Pfizer. F.J. has provided consultancy for Roche, Ipsen, AstraZeneca, Janssen, Tesaro, Bristol-Myers Squibb, Pfizer, Novartis and Sanofi, Astellas. F.J. has received travel/accommodation expenses from Roche, Ipsen, AstraZeneca, Janssen, Tesaro and Bristol-Myers Squibb and has received funding (institution) from Astellas. J. Carles has received research funding from AB Science, Aragon Pharmaceuticals, Arog Pharmaceuticals, Inc., Astellas Pharma, AstraZeneca AB, Aveo Pharmaceuticals, Bayer AG, Blueprint Medicines, BN Immunotherapeutics, Boehringer Ingelheim España, Bristol-Myers Squibb, Clovis Oncology, Cougar Biotechnology, Deciphera Pharmaceuticlas, Exelixis, Hoffmann-La Roche, Genentech, GlaxoSmithKline, Incyte Corporations, Janssen-Cilag, Karyopharm Therapeutics, Laboratoires Leurquin Mediolanum, Lilly, MedImmune, Millennium Pharmaceuticals, Nanobiotix, Novartis Farmaceutica, Pfizer, Puma Biotechnology, Sanofi-Aventis, SFJ Pharma and Teva; has participated in advisory boards for Bayer, Johnson & Johnson, Bristol-Myers Squibb, Astellas, Pfizer, Sanofi, MSD Oncology, Roche and AstraZeneca; has participated in speakers’ bureaux for Bayer, Johnson & Johnson, Asofarma and Astellas; and received travel expenses from Bristol-Myers Squibb, Ipsen, Roche and AstraZeneca. A.F. has received honoraria and travel expenses from AstraZeneca, MSD, Roche, Janssen and Astellas. P.M. declares no competing interests. D.P. consults for Ada Cap (Advanced Accelerator Applications), Amgen, Astellas, AstraZeneca, Bayer, Bicycle Therapeutics, Boehringer Ingelheim, Bristol-Myers Squibb, Clovis Oncology, Eli Lilly, Exelixis, Incyte, Janssen, Mirati, Monopteros, Pfizer, Pharmacyclics, Roche, Seattle Genetics and Urogen; has received research funding from Ada Cap, Agensys, Astellas, AstraZeneca, Bayer, BioXcel Therapeutics, Bristol-Myers Squibb, Clovis Oncology, Eisai, Eli Lilly, Endocyte, Genentech, Innocrin, MedImmune, Medivation, Merck, Mirati, Novartis, Pfizer, Progenics and Replimune; and is a stockholder in Bellicum. F.R. has received honoraria from Merck KGaA and MSD. N.C. has received research funding from RedX Pharmaceuticals, Tarveda, AstraZeneca, Roche, Novartis, Eisai, Boehringer Ingelheim and Taiho; has participated in advisory boards for RedX Pharmaceuticals; and has been an advisor (unpaid) to Roche Pharmaceuticals. Research at the Christie NHS Foundation Trust was supported by the NIHR Manchester Clinical Research Facility and Manchester Experimental Cancer Medicine Centre award. A.B. has received research funding from Genentech, Merck, AstraZeneca, MedImmune, Nektar, Seattle Genetics and Immunomedics; has held a consultancy or advisory role for Genentech, Incyte, Merck, Pfizer, AstraZeneca, MedImmune, Nektar and Seattle Genetics; has had speaker engagements for Genentech, Merck, AstraZeneca and MedImmune; and has participated in steering groups and advisory boards for Merck. S.S.S. has consulted for or served on advisory boards for AstraZeneca, Pfizer, Roche, Merck, Bristol-Myers Squibb, Astellas, Janssen and Bayer. M.G. has held a consultancy or advisory role for Aileron Therapeutics and is a stockholder in Rappta Therapeutics. P.G. has consulted for AstraZeneca, Bayer, Biocept, Bristol-Myers Squibb, Clovis Oncology, Driver, EMD Serono, Exelixis, Foundation Medicine, Genentech/Roche, Genzyme, Heron Therapeutics, Janssen, Merck, Mirati Therapeutics, Pfizer, Seattle Genetics, QED Therapeutics and GlaxoSmithKline; has delivered educational programs to GlaxoSmithKline; and has received research funding from AstraZeneca, Bayer, Genentech/Roche, Merck, Mirati Therapeutics, Oncogenex, Pfizer, Clovis Oncology, Bavarian Nordic, Immunomedics, Debiopharm and Bristol-Myers Squibb. A.R. has received research funding from Pfizer and Merck GA; and has received honoraria and participated in advisory boards for Pfizer, Merck GA, Bristol-Myers Squibb, AstraZeneca, Roche, Novartis, MSD and Ipsen. R.J. has received research funding from AstraZeneca, MSD, Merck Serono, Pfizer, Bristol-Myers Squibb, Roche, Janssen and Astellas; has received honoraria for speaking and advisory boards from AstraZeneca, MSD, Merck Serono, Pfizer, Bristol-Myers Squibb, Janssen and Astellas; and has written for the educational company Mirrors of Medicine (noncompensated). J. Cosaert is an AstraZeneca employee. D.H., I.K., R. Mather and R. McEwen are AstraZeneca employees and stockholders. F.M. is a contract employee of AstraZeneca and shareholder in StatProcess and Health Data Process. D.L. is a former employee of AstraZeneca (as Senior Director Physician on this study), consults for AstraZeneca and has received research funding from Decision Science. Funding Information: We thank the patients and their families who gave their time and commitment to participate in this study; the CRUK Experimental Cancer Medicine Centre; and staff and investigators at participating sites, including the following. Canada: M. Sawyer, University of Alberta—Cross Cancer Institute; S. S. Sridhar, Princess Margaret Cancer Centre, Toronto; C. Ferrario, Jewish General Hospital, Montreal. France: A. Fléchon, Centre Léon Bérard, Lyon; G. Gravis, Institute Paoli-Calmettes, Marseille; F. Joly, Centre Francois Baclesse, Caen; L. Mourey, Institut Claudius Regaud, Toulouse; A. Ravaud, Bordeaux University Hospital; F. Rolland, Institut de Cancerologie de l’Ouest, Saint-Herblain. Spain: J. Carles, Vall D’Hebron Institute of Oncology, Barcelona; J. P. Maroto, Hospital de la Santa Creu i San Pau, Barcelona; J. P. Vásquez, Hospital Clinico San Carlos, Madrid; A. Rodriquez-Vida, IMIM Hospital del Mar Medical Research Instutute, Barcelona. UK: H.-T. Arkenau, Sarah Cannon Research Institute, London; S. Chowdhury, Guys and St Thomas’ Medical School, London; N. Cook, The Christie NHS Foundation Trust, Manchester (Research at the Christie NHS Foundation Trust was supported by the NIHR Manchester Clinical Research Facility and Manchester Experimental Cancer Medicine Centre award); S. Crabb, University of Southampton; R. Jones, University of Glasgow, Beatson West of Scotland Cancer Centre, Glasgow; T. Powles, Barts Cancer Institute, London. USA: A. V. Balar, Perlmutter Cancer Center, NYU Langone Health, New York; J. Bendell, Tennessee Oncology, Nashville; A. Drakaki, Ronald Reagan UCLA Medical Center, Hematology Oncology, Santa Monica; P. Grivas, University of Washington, Seattle; M. Galsky, Icahn School of Medicine at Mount Sinai, New York; N. Hahn, Johns Hopkins University School of Medicine, Baltimore; E. Lim, New York Presbyterian, Columbia University Irving Medical Centre, New York; D. Petrylak, Yale School of Medicine, New Haven; J. Reeves Jr., Florida Cancer Specialists and Research Institute; B. Rini and P. Grivas, Cleveland Clinic, Cleveland; P. Van Veldhuizen, HCA Midwest, Kansas City. We thank the staff at Sarah Cannon Development Innovations and AstraZeneca who supported this clinical study. Medical writing support was provided by S. Hurrell (Bioscript Medical) and was funded by AstraZeneca. We thank A. Reddy (AstraZeneca) for support with data analysis. Publisher Copyright: © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2021/5
Y1 - 2021/5
N2 - Durvalumab is a programmed death-ligand 1 (PD-L1) inhibitor with clinical activity in advanced urothelial cancer (AUC)1. AUC is characterized by several recurrent targetable genomic alterations2–5. This study (NCT02546661, BISCAY) combined durvalumab with relevant targeted therapies in biomarker-selected chemotherapy-refractory AUC populations including: (1) fibroblast growth factor receptor (FGFR) inhibitors in tumors with FGFR DNA alterations (FGFRm); (2) pharmacological inhibitor of the enzyme poly-ADP ribose polymerase (PARP) in tumors with and without DNA homologous recombination repair deficiency (HRRm); and (3) TORC1/2 inhibitors in tumors with DNA alteration to the mTOR/PI3K pathway3–5.This trial adopted a new, biomarker-driven, multiarm adaptive design. Safety, efficacy and relevant biomarkers were evaluated. Overall, 391 patients were screened of whom 135 were allocated to one of six study arms. Response rates (RRs) ranged 9–36% across the study arms, which did not meet efficacy criteria for further development. Overall survival (OS) and progression-free survival (PFS) were similar in the combination arms and durvalumab monotherapy arm. Biomarker analysis showed a correlation between circulating plasma-based DNA (ctDNA) and tissue for FGFRm. Sequential circulating tumor DNA analysis showed that changes to FGFRm correlated with clinical outcome. Our data support the clinical activity of FGFR inhibition and durvalumab monotherapy but do not show increased activity for any of the combinations. These findings question the targeted/immune therapy approach in AUC.
AB - Durvalumab is a programmed death-ligand 1 (PD-L1) inhibitor with clinical activity in advanced urothelial cancer (AUC)1. AUC is characterized by several recurrent targetable genomic alterations2–5. This study (NCT02546661, BISCAY) combined durvalumab with relevant targeted therapies in biomarker-selected chemotherapy-refractory AUC populations including: (1) fibroblast growth factor receptor (FGFR) inhibitors in tumors with FGFR DNA alterations (FGFRm); (2) pharmacological inhibitor of the enzyme poly-ADP ribose polymerase (PARP) in tumors with and without DNA homologous recombination repair deficiency (HRRm); and (3) TORC1/2 inhibitors in tumors with DNA alteration to the mTOR/PI3K pathway3–5.This trial adopted a new, biomarker-driven, multiarm adaptive design. Safety, efficacy and relevant biomarkers were evaluated. Overall, 391 patients were screened of whom 135 were allocated to one of six study arms. Response rates (RRs) ranged 9–36% across the study arms, which did not meet efficacy criteria for further development. Overall survival (OS) and progression-free survival (PFS) were similar in the combination arms and durvalumab monotherapy arm. Biomarker analysis showed a correlation between circulating plasma-based DNA (ctDNA) and tissue for FGFRm. Sequential circulating tumor DNA analysis showed that changes to FGFRm correlated with clinical outcome. Our data support the clinical activity of FGFR inhibition and durvalumab monotherapy but do not show increased activity for any of the combinations. These findings question the targeted/immune therapy approach in AUC.
UR - http://www.scopus.com/inward/record.url?scp=85105325337&partnerID=8YFLogxK
U2 - 10.1038/s41591-021-01317-6
DO - 10.1038/s41591-021-01317-6
M3 - Article
C2 - 33941921
AN - SCOPUS:85105325337
SN - 1078-8956
VL - 27
SP - 793
EP - 801
JO - Nature Medicine
JF - Nature Medicine
IS - 5
ER -