Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II

Janice A. Nagy, Carson Semple, Daniela Riveros, Benjamin Sanchez, Seward B. Rutkove

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Electrical impedance methods, including electrical impedance myography, are increasingly being used as biomarkers of muscle health since they measure passive electrical properties of muscle that alter in disease. One disorder, Pompe Disease (Glycogen storage disease type II (GSDII)), remains relatively unstudied. This disease is marked by dramatic accumulation of intracellular myofiber glycogen. Here we assessed the electrical properties of skeletal muscle in a model of GSDII, the Pompe6neo/6neo (Pompe) mouse. Ex vivo impedance measurements of gastrocnemius (GA) were obtained using a dielectric measuring cell in 30-week-old female Pompe (N = 10) and WT (N = 10) mice. Longitudinal and transverse conductivity, σ, and the relative permittivity, εr, and Cole–Cole complex resistivity parameters at 0 Hz and infinite frequency, ρo and ρ, respectively, and the intracellular resistivity, ρintracellular were determined from the impedance data. Glycogen content (GC) was visualized histologically and quantified biochemically. At frequencies > 1 MHz, Pompe mice demonstrated significantly decreased longitudinal and transverse conductivity, increased Cole–Cole parameters, ρo and ρo, and decreased ρintracellular. Changes in longitudinal conductivity and ρintracellular correlated with increased GC in Pompe animals. Ex vivo high frequency impedance measures are sensitive to alterations in intracellular myofiber features considered characteristic of GSDII, making them potentially useful measures of disease status.

Original languageEnglish
Article number5327
JournalScientific Reports
Volume12
Issue number1
DOIs
StatePublished - Dec 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II'. Together they form a unique fingerprint.

Cite this