TY - JOUR
T1 - Air displacement plethysmography
T2 - Validation in overweight and obese subjects
AU - Ginde, Samir R.
AU - Geliebter, Allan
AU - Rubiano, Frederick
AU - Silva, Analiza M.
AU - Wang, Jack
AU - Heshka, Stanley
AU - Heymsfield, Steven B.
PY - 2005
Y1 - 2005
N2 - Objective: Patients with moderate and severe obesity, because of their physical size, often cannot be evaluated with conventional body composition measurement systems. The BOD POD air displacement plethysmography (ADP) system can accommodate a large body volume and may provide an opportunity for measuring body density (Db) in obese subjects. Db can be used in two- or three-compartment body composition models for estimating total body fat in patients with severe obesity. The purpose of this study was to compare D b measured by ADP to Db measured by underwater weighing (UWW) in subjects ranging from normal weight to severely obese. Research Methods and Procedures: Db was measured with UWW and BOD POD in 123 subjects (89 men and 34 women; age, 46.5 ± 16.9 years; BMI, 31.5 ± 7.3 kg/m2); 15, 70, and 10 subjects were overweight (25 ≤ BMI < 30 kg/m2), obese (30 ≤ BMI < 40 kg/m2), and severely obese (BMI ≥ 40 kg/m2), respectively. Results: There was a strong correlation between Db (kilograms per liter) measured by UWW and ADP (r = 0.94, standard error of the estimate = 0.0073 kg/L, p < 0.001). Similarly, percent fat estimates from UWW and ADP using the two-compartment Siri equation were highly correlated (r = 0.94, standard error of the estimate = 3.58%, p < 0.001). Bland-Altman analysis showed no significant bias between Db measured by UWW and ADP. After controlling for Db measured by ADP, no additional between-subject variation in Db by UWW was accounted for by subject age, sex, or BMI. Discussion: Body density, an important physical property used in human body composition models, can be accurately measured by ADP in overweight and obese subjects.
AB - Objective: Patients with moderate and severe obesity, because of their physical size, often cannot be evaluated with conventional body composition measurement systems. The BOD POD air displacement plethysmography (ADP) system can accommodate a large body volume and may provide an opportunity for measuring body density (Db) in obese subjects. Db can be used in two- or three-compartment body composition models for estimating total body fat in patients with severe obesity. The purpose of this study was to compare D b measured by ADP to Db measured by underwater weighing (UWW) in subjects ranging from normal weight to severely obese. Research Methods and Procedures: Db was measured with UWW and BOD POD in 123 subjects (89 men and 34 women; age, 46.5 ± 16.9 years; BMI, 31.5 ± 7.3 kg/m2); 15, 70, and 10 subjects were overweight (25 ≤ BMI < 30 kg/m2), obese (30 ≤ BMI < 40 kg/m2), and severely obese (BMI ≥ 40 kg/m2), respectively. Results: There was a strong correlation between Db (kilograms per liter) measured by UWW and ADP (r = 0.94, standard error of the estimate = 0.0073 kg/L, p < 0.001). Similarly, percent fat estimates from UWW and ADP using the two-compartment Siri equation were highly correlated (r = 0.94, standard error of the estimate = 3.58%, p < 0.001). Bland-Altman analysis showed no significant bias between Db measured by UWW and ADP. After controlling for Db measured by ADP, no additional between-subject variation in Db by UWW was accounted for by subject age, sex, or BMI. Discussion: Body density, an important physical property used in human body composition models, can be accurately measured by ADP in overweight and obese subjects.
KW - BOD POD
KW - Body composition
KW - Nutritional assessment
KW - Underwater weighing
UR - http://www.scopus.com/inward/record.url?scp=27744496203&partnerID=8YFLogxK
U2 - 10.1038/oby.2005.146
DO - 10.1038/oby.2005.146
M3 - Article
C2 - 16076993
AN - SCOPUS:27744496203
SN - 1071-7323
VL - 13
SP - 1232
EP - 1237
JO - Obesity Research
JF - Obesity Research
IS - 7
ER -