TY - JOUR
T1 - Age-related changes in normal-appearing brain tissue and white matter hyperintensities
T2 - More of the same or something else?
AU - Spilt, Aart
AU - Geeraedts, Tychon
AU - De Craen, Anton J.M.
AU - Westendorp, Rudi G.J.
AU - Blauw, Gerard J.
AU - Van Buchem, Mark A.
PY - 2005
Y1 - 2005
N2 - BACKGROUND AND PURPOSE: Cerebral white matter (WM) hyperintensities are a frequent finding in elderly people, and lowering of cerebral magnetization transfer ratio (MTR) has been observed. The aim of this study was to assess the relationship between age-related WM hyperintensities and MTR changes in the brain. METHODS: We performed MR imaging in a group of young subjects, a group of elderly individuals with minimal WM hyperintensities, and a group of elderly individuals with abundant WM hyperintensities. In addition, we performed volumetric MTR analysis of the whole brain and of the normal-appearing WM (NAWM) in these groups. RESULTS: Volumetric MTR parameters differed between elderly and young patients. Mean MTR ± standard error of the mean (SEM) was 34.0% ± 0.12% in the young, 33.0% ± 0.08% in the elderly with minimal WM hyperintensities, 32.8% ± 0.09%) in the group with abundant WM hyperintensities. Peak height (number of voxels ± SEM) was 122 ± 1.2 in the young, 99 ± 1.5 in the elderly with minimal WM hyperintensities, and 98 ± 1.6 in the group with abundant WM hyperintensities. Mean MTR of NAWM was lower in the elderly compared with the young (36.7% ± 0.12%) but did not differ between subjects with minimal (36.0% ± 0.11%) and those with abundant WM hyperintensities (35.9% ± 0.13%). CONCLUSION: Our results show that aging gives rise to changes in normal-appearing brain tissue. These changes, which can be detected on magnetization transfer imaging, seem to have no relationship with age-related WM hyperintensities and might have a different etiology.
AB - BACKGROUND AND PURPOSE: Cerebral white matter (WM) hyperintensities are a frequent finding in elderly people, and lowering of cerebral magnetization transfer ratio (MTR) has been observed. The aim of this study was to assess the relationship between age-related WM hyperintensities and MTR changes in the brain. METHODS: We performed MR imaging in a group of young subjects, a group of elderly individuals with minimal WM hyperintensities, and a group of elderly individuals with abundant WM hyperintensities. In addition, we performed volumetric MTR analysis of the whole brain and of the normal-appearing WM (NAWM) in these groups. RESULTS: Volumetric MTR parameters differed between elderly and young patients. Mean MTR ± standard error of the mean (SEM) was 34.0% ± 0.12% in the young, 33.0% ± 0.08% in the elderly with minimal WM hyperintensities, 32.8% ± 0.09%) in the group with abundant WM hyperintensities. Peak height (number of voxels ± SEM) was 122 ± 1.2 in the young, 99 ± 1.5 in the elderly with minimal WM hyperintensities, and 98 ± 1.6 in the group with abundant WM hyperintensities. Mean MTR of NAWM was lower in the elderly compared with the young (36.7% ± 0.12%) but did not differ between subjects with minimal (36.0% ± 0.11%) and those with abundant WM hyperintensities (35.9% ± 0.13%). CONCLUSION: Our results show that aging gives rise to changes in normal-appearing brain tissue. These changes, which can be detected on magnetization transfer imaging, seem to have no relationship with age-related WM hyperintensities and might have a different etiology.
UR - http://www.scopus.com/inward/record.url?scp=28544438725&partnerID=8YFLogxK
M3 - Article
C2 - 15814912
AN - SCOPUS:28544438725
SN - 0195-6108
VL - 26
SP - 725
EP - 729
JO - American Journal of Neuroradiology
JF - American Journal of Neuroradiology
IS - 4
ER -