TY - GEN
T1 - AFM indentation of aorta and lung reveals tissue-specific micromechanical degradation with age in a mouse model of severe Marfan syndrome
AU - Lee, Jia Jye
AU - Rao, Satish
AU - Galatioto, Josephine
AU - Ramirez, Francesco
AU - Costa, Kevin D.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/6/2
Y1 - 2015/6/2
N2 - Marfan syndrome (MFS) is an autosomal dominant disease that causes connective tissue disorders due to mutation of the fibrillin-1 gene, FBN1. This study aimed to characterize the microelastic properties of aorta and lung tissues from wild type (WT) and age-matched FBN1-underexpressing mutant (MT) mice to identify tissue-specific biomechanical effects of aging and cardiopulmonary disease in MFS. Atomic force microscopy (AFM) was used to indent intact lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition (HED) analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between MT and WT tissues. By contrast, the media layer of MT aorta showed progressive structural and mechanical degradation, with a modulus 50% softer than aged-matched WT media by 3.5 months old. MT lung also revealed rapid mechanical deterioration during adulthood, and was 90% softer than WT lung at 3.5 months. The findings reveal micromechanical softening of elastin-rich aorta and lung tissues in aging MT mice, providing insights into the biomechanical consequences of MFS.
AB - Marfan syndrome (MFS) is an autosomal dominant disease that causes connective tissue disorders due to mutation of the fibrillin-1 gene, FBN1. This study aimed to characterize the microelastic properties of aorta and lung tissues from wild type (WT) and age-matched FBN1-underexpressing mutant (MT) mice to identify tissue-specific biomechanical effects of aging and cardiopulmonary disease in MFS. Atomic force microscopy (AFM) was used to indent intact lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition (HED) analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between MT and WT tissues. By contrast, the media layer of MT aorta showed progressive structural and mechanical degradation, with a modulus 50% softer than aged-matched WT media by 3.5 months old. MT lung also revealed rapid mechanical deterioration during adulthood, and was 90% softer than WT lung at 3.5 months. The findings reveal micromechanical softening of elastin-rich aorta and lung tissues in aging MT mice, providing insights into the biomechanical consequences of MFS.
UR - http://www.scopus.com/inward/record.url?scp=84941042375&partnerID=8YFLogxK
U2 - 10.1109/NEBEC.2015.7117054
DO - 10.1109/NEBEC.2015.7117054
M3 - Conference contribution
AN - SCOPUS:84941042375
T3 - 2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
BT - 2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
Y2 - 17 April 2015 through 19 April 2015
ER -