TY - JOUR
T1 - A worldwide correlation of lactase persistence phenotype and genotypes
AU - Itan, Yuval
AU - Jones, Bryony L.
AU - Ingram, Catherine Je
AU - Swallow, Dallas M.
AU - Thomas, Mark G.
N1 - Funding Information:
We would like to thank Neil Bradman, Sarah Browning, Chris Plaster, Naser Ansari Pour, N. Saha, and Ayele Tarekegn for their help with the samples, as well as Charlotte Mulcare and Mike Weale who laid the foundations for this study, Pascale Gerbault, Adam Powell, and Anke Liebert for their helpful comments and suggestions and Melford Charitable Trust for support for sequencing. Yuval Itan was funded by the B’nai B’rith/Leo Baeck London Lodge and Annals of Human Genetics scholarships, Bryony L. Jones by a MRC/DTA studentship, and Catherine J.E. Ingram by a BBSRC-CASE studentship. We thank the AHRC Centre for the Evolution of Cultural Diversity (CECD) and the Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), UCL, for supporting this research.
PY - 2010
Y1 - 2010
N2 - Background. The ability of adult humans to digest the milk sugar lactose - lactase persistence - is a dominant Mendelian trait that has been a subject of extensive genetic, medical and evolutionary research. Lactase persistence is common in people of European ancestry as well as some African, Middle Eastern and Southern Asian groups, but is rare or absent elsewhere in the world. The recent identification of independent nucleotide changes that are strongly associated with lactase persistence in different populations worldwide has led to the possibility of genetic tests for the trait. However, it is highly unlikely that all lactase persistence-associated variants are known. Using an extensive database of lactase persistence phenotype frequencies, together with information on how those data were collected and data on the frequencies of lactase persistence variants, we present a global summary of the extent to which current genetic knowledge can explain lactase persistence phenotype frequency. Results. We used surface interpolation of Old World lactase persistence genotype and phenotype frequency estimates obtained from all available literature and perform a comparison between predicted and observed trait frequencies in continuous space. By accommodating additional data on sample numbers and known false negative and false positive rates for the various lactase persistence phenotype tests (blood glucose and breath hydrogen), we also apply a Monte Carlo method to estimate the probability that known lactase persistence-associated allele frequencies can explain observed trait frequencies in different regions. Conclusion. Lactase persistence genotype data is currently insufficient to explain lactase persistence phenotype frequency in much of western and southern Africa, southeastern Europe, the Middle East and parts of central and southern Asia. We suggest that further studies of genetic variation in these regions should reveal additional nucleotide variants that are associated with lactase persistence.
AB - Background. The ability of adult humans to digest the milk sugar lactose - lactase persistence - is a dominant Mendelian trait that has been a subject of extensive genetic, medical and evolutionary research. Lactase persistence is common in people of European ancestry as well as some African, Middle Eastern and Southern Asian groups, but is rare or absent elsewhere in the world. The recent identification of independent nucleotide changes that are strongly associated with lactase persistence in different populations worldwide has led to the possibility of genetic tests for the trait. However, it is highly unlikely that all lactase persistence-associated variants are known. Using an extensive database of lactase persistence phenotype frequencies, together with information on how those data were collected and data on the frequencies of lactase persistence variants, we present a global summary of the extent to which current genetic knowledge can explain lactase persistence phenotype frequency. Results. We used surface interpolation of Old World lactase persistence genotype and phenotype frequency estimates obtained from all available literature and perform a comparison between predicted and observed trait frequencies in continuous space. By accommodating additional data on sample numbers and known false negative and false positive rates for the various lactase persistence phenotype tests (blood glucose and breath hydrogen), we also apply a Monte Carlo method to estimate the probability that known lactase persistence-associated allele frequencies can explain observed trait frequencies in different regions. Conclusion. Lactase persistence genotype data is currently insufficient to explain lactase persistence phenotype frequency in much of western and southern Africa, southeastern Europe, the Middle East and parts of central and southern Asia. We suggest that further studies of genetic variation in these regions should reveal additional nucleotide variants that are associated with lactase persistence.
UR - http://www.scopus.com/inward/record.url?scp=77949297946&partnerID=8YFLogxK
U2 - 10.1186/1471-2148-10-36
DO - 10.1186/1471-2148-10-36
M3 - Article
C2 - 20144208
AN - SCOPUS:77949297946
SN - 1471-2148
VL - 10
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
IS - 1
M1 - 36
ER -