TY - JOUR
T1 - A wearable artificial kidney for patients with end-stage renal disease
AU - Gura, Victor
AU - Rivara, Matthew B.
AU - Bieber, Scott
AU - Munshi, Raj
AU - Smith, Nancy Colobong
AU - Linke, Lori
AU - Kundzins, John
AU - Beizai, Masoud
AU - Ezon, Carlos
AU - Kessler, Larry
AU - Himmelfarb, Jonathan
N1 - Publisher Copyright:
© 2016 American Society for Clinical Investigation. All rights reserved.
PY - 2016/6/2
Y1 - 2016/6/2
N2 - BACKGROUND. Stationary hemodialysis machines hinder mobility and limit activities of daily life during dialysis treatments. New hemodialysis technologies are needed to improve patient autonomy and enhance quality of life. METHODS. We conducted a FDA-approved human trial of a wearable artificial kidney, a miniaturized, wearable hemodialysis machine, based on dialysate-regenerating sorbent technology. We aimed to determine the efficacy of the wearable artificial kidney in achieving solute, electrolyte, and volume homeostasis in up to 10 subjects over 24 hours. RESULTS. During the study, all subjects remained hemodynamically stable, and there were no serious adverse events. Serum electrolytes and hemoglobin remained stable over the treatment period for all subjects. Fluid removal was consistent with prescribed ultrafiltration rates. Mean blood flow was 42 ± 24 ml/min, and mean dialysate flow was 43 ± 20 ml/min. Mean urea, creatinine, and phosphorus clearances over 24 hours were 17 ± 10, 16 ± 8, and 15 ± 9 ml/min, respectively. Mean β2-microglobulin clearance was 5 ± 4 ml/min. Of 7 enrolled subjects, 5 completed the planned 24 hours of study treatment. The trial was stopped after the seventh subject due to device-related technical problems, including excessive carbon dioxide bubbles in the dialysate circuit and variable blood and dialysate flows. CONCLUSION. Treatment with the wearable artificial kidney was well tolerated and resulted in effective uremic solute clearance and maintenance of electrolyte and fluid homeostasis. These results serve as proof of concept that, after redesign to overcome observed technical problems, a wearable artificial kidney can be developed as a viable novel alternative dialysis technology.
AB - BACKGROUND. Stationary hemodialysis machines hinder mobility and limit activities of daily life during dialysis treatments. New hemodialysis technologies are needed to improve patient autonomy and enhance quality of life. METHODS. We conducted a FDA-approved human trial of a wearable artificial kidney, a miniaturized, wearable hemodialysis machine, based on dialysate-regenerating sorbent technology. We aimed to determine the efficacy of the wearable artificial kidney in achieving solute, electrolyte, and volume homeostasis in up to 10 subjects over 24 hours. RESULTS. During the study, all subjects remained hemodynamically stable, and there were no serious adverse events. Serum electrolytes and hemoglobin remained stable over the treatment period for all subjects. Fluid removal was consistent with prescribed ultrafiltration rates. Mean blood flow was 42 ± 24 ml/min, and mean dialysate flow was 43 ± 20 ml/min. Mean urea, creatinine, and phosphorus clearances over 24 hours were 17 ± 10, 16 ± 8, and 15 ± 9 ml/min, respectively. Mean β2-microglobulin clearance was 5 ± 4 ml/min. Of 7 enrolled subjects, 5 completed the planned 24 hours of study treatment. The trial was stopped after the seventh subject due to device-related technical problems, including excessive carbon dioxide bubbles in the dialysate circuit and variable blood and dialysate flows. CONCLUSION. Treatment with the wearable artificial kidney was well tolerated and resulted in effective uremic solute clearance and maintenance of electrolyte and fluid homeostasis. These results serve as proof of concept that, after redesign to overcome observed technical problems, a wearable artificial kidney can be developed as a viable novel alternative dialysis technology.
UR - http://www.scopus.com/inward/record.url?scp=85128973283&partnerID=8YFLogxK
U2 - 10.1172/jci.insight.86397
DO - 10.1172/jci.insight.86397
M3 - Article
AN - SCOPUS:85128973283
SN - 2379-3708
VL - 1
JO - JCI insight
JF - JCI insight
IS - 8
M1 - e86397
ER -