A simulation model of the counting-rate response of clinical pet systems and it's application to optimize the injected dose

Nicolas Karakatsanis, Konstantina Nikita

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

The design principles of clinical PET data acquisition protocols require images of high statistical quality, while the scanning time remains relatively short and the total amount of radioactive dose does not exceed a level, above which significant count losses are observed. This can be satisfied by determining a range of injected dose levels where the performance parameter of Noise Equivalent Count Rate (NECR) is maximized. However certain patient- and scanner-related parameters can shift the range. We propose a methodology to design a model of the NECR response to certain patient-scanner parameters, based on validated simulations of imaging systems and realistic human phantoms. We used Geant4 Application for Tomography Emission and investigated the relationship between the NECR and the patient size, the coincidence time window of the scanner, the dead-time of the system's electronics and the energy window.

Original languageEnglish
Title of host publicationProceedings - 2009 IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2009
Pages398-401
Number of pages4
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009 - Boston, MA, United States
Duration: 28 Jun 20091 Jul 2009

Publication series

NameProceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009

Conference

Conference2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009
Country/TerritoryUnited States
CityBoston, MA
Period28/06/091/07/09

Keywords

  • Biomedical imaging
  • Dose
  • Monte carlo methods
  • Optimization methods
  • Positron emission tomography
  • Simulation

Fingerprint

Dive into the research topics of 'A simulation model of the counting-rate response of clinical pet systems and it's application to optimize the injected dose'. Together they form a unique fingerprint.

Cite this