A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm

Ayan Ray, Amitava Bandyopadhyay, Sankar De, Biswajit Ray, Pradip N. Ghosh

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

A very simple and inexpensive tunable semiconductor diode laser controller is designed for stable operation of the diode laser. The diode laser controller is stable within +/-8 μA and +/-10 mK, respectively. The noise spectrum of the current controller is studied by FFT analysis. We have used our home-made diode laser system in a tunable diode laser absorption spectrometer (TDLAS) to probe weak overtone transitions of water vapour molecule. The diode laser wavelength is coarsely tuned by changing the operating temperature to probe (2, 1, 1)←(0, 0, 0) band overtone transitions of water vapour within 818-835 nm. To demonstrate line shape study, seven transitions are scanned by ramping the drive current of the diode laser (at constant operating temperature) under different perturber (laboratory air) pressures within the sample cell. A balanced detector and a lock-in amplifier are used for phase sensitive detection purpose. Small current modulation amplitude, balanced detection and proper adjustment of the lock-in amplifier help to obtain a S/N ratio ranging from ∼100 to ∼7 using a small sample path length of 1.5 m. Experimentally obtained derivative spectrum is numerically integrated to reveal the original line shape and fitted with a nonlinear least squares fitting program to extract air broadening coefficients and line strength parameters. The spectroscopic line parameters are compared with the results from HITRAN database.

Original languageEnglish
Pages (from-to)359-367
Number of pages9
JournalOptics and Laser Technology
Volume39
Issue number2
DOIs
StatePublished - Mar 2007
Externally publishedYes

Keywords

  • Diode laser
  • Lock-in amplifier
  • Wavelength modulation

Fingerprint

Dive into the research topics of 'A simple scanning semiconductor diode laser source and its application in wavelength modulation spectroscopy around 825 nm'. Together they form a unique fingerprint.

Cite this