Abstract

A large portion of common variant loci associated with genetic risk for schizophrenia reside within noncoding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from the human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on colocalization of a risk SNP, eQTL, and regulatory element sequence. We identified potential physical interactions of noncontiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and -induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated noncoding SNPs and 3D genome architecture associated with chromosomal loopings and transcriptional regulation in the brain.

Original languageEnglish
Pages (from-to)1417-1429
Number of pages13
JournalCell Reports
Volume9
Issue number4
DOIs
StatePublished - 20 Nov 2014

Fingerprint

Dive into the research topics of 'A Role for Noncoding Variation in Schizophrenia'. Together they form a unique fingerprint.

Cite this