TY - JOUR
T1 - A recombinant isoform of the Ole e 7 olive pollen allergen assembled by de novo mass spectrometry retains the allergenic ability of the natural allergen
AU - Oeo-Santos, Carmen
AU - Mas, Salvador
AU - Benedé, Sara
AU - López-Lucendo, María
AU - Quiralte, Joaquín
AU - Blanca, Miguel
AU - Mayorga, Cristobalina
AU - Villalba, Mayte
AU - Barderas, Rodrigo
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/9/15
Y1 - 2018/9/15
N2 - The allergenic non-specific lipid transfer protein Ole e 7 from olive pollen is a major allergen associated with severe symptoms in areas with high olive pollen levels. Despite its clinical importance, its cloning and recombinant production has been unable by classical approaches. This study aimed at determining by mass-spectrometry based proteomics its complete amino acid sequence for its subsequent expression and characterization. To this end, the natural protein was in-2D-gel tryptic digested, and CID and HCD fragmentation spectra obtained by nLC-MS/MS analyzed using PEAKS software. Thirteen out of the 457 de novo sequenced peptides obtained allowed assembling its full-length amino acid sequence. Then, Ole e 7-encoding cDNA was synthesized and cloned in pPICZαA vector for its expression in Pichia pastoris yeast. The analyses by Circular Dichroism, and WB, ELISA and cell-based tests using sera and blood from olive pollen-sensitized patients showed that rOle e 7 mostly retained the structural, allergenic and antigenic properties of the natural allergen. In summary, rOle e 7 allergen assembled by de novo peptide sequencing by MS behaved immunologically similar to the natural allergen scarcely isolated from pollen. Significance: Olive pollen is an important cause of allergy. The non-specific lipid binding protein Ole e 7 is a major allergen with a high incidence and a phenotype associated to severe clinical symptoms. Despite its relevance, its cloning and recombinant expression has been unable by classical techniques. Here, we have inferred the primary amino acid sequence of Ole e 7 by mass-spectrometry. We separated Ole e 7 isolated from pollen by 2DE. After in-gel digestion with trypsin and a direct analysis by nLC-MS/MS in an LTQ-Orbitrap Velos, we got the complete de novo sequenced peptides repertoire that allowed the assembling of the primary sequence of Ole e 7. After its protein expression, purification to homogeneity, and structural and immunological characterization using sera from olive pollen allergic patients and cell-based assays, we observed that the recombinant allergen retained the antigenic and allergenic properties of the natural allergen. Collectively, we show that the recombinant protein assembled by proteomics would be suitable for a better in vitro diagnosis of olive pollen allergic patients.
AB - The allergenic non-specific lipid transfer protein Ole e 7 from olive pollen is a major allergen associated with severe symptoms in areas with high olive pollen levels. Despite its clinical importance, its cloning and recombinant production has been unable by classical approaches. This study aimed at determining by mass-spectrometry based proteomics its complete amino acid sequence for its subsequent expression and characterization. To this end, the natural protein was in-2D-gel tryptic digested, and CID and HCD fragmentation spectra obtained by nLC-MS/MS analyzed using PEAKS software. Thirteen out of the 457 de novo sequenced peptides obtained allowed assembling its full-length amino acid sequence. Then, Ole e 7-encoding cDNA was synthesized and cloned in pPICZαA vector for its expression in Pichia pastoris yeast. The analyses by Circular Dichroism, and WB, ELISA and cell-based tests using sera and blood from olive pollen-sensitized patients showed that rOle e 7 mostly retained the structural, allergenic and antigenic properties of the natural allergen. In summary, rOle e 7 allergen assembled by de novo peptide sequencing by MS behaved immunologically similar to the natural allergen scarcely isolated from pollen. Significance: Olive pollen is an important cause of allergy. The non-specific lipid binding protein Ole e 7 is a major allergen with a high incidence and a phenotype associated to severe clinical symptoms. Despite its relevance, its cloning and recombinant expression has been unable by classical techniques. Here, we have inferred the primary amino acid sequence of Ole e 7 by mass-spectrometry. We separated Ole e 7 isolated from pollen by 2DE. After in-gel digestion with trypsin and a direct analysis by nLC-MS/MS in an LTQ-Orbitrap Velos, we got the complete de novo sequenced peptides repertoire that allowed the assembling of the primary sequence of Ole e 7. After its protein expression, purification to homogeneity, and structural and immunological characterization using sera from olive pollen allergic patients and cell-based assays, we observed that the recombinant allergen retained the antigenic and allergenic properties of the natural allergen. Collectively, we show that the recombinant protein assembled by proteomics would be suitable for a better in vitro diagnosis of olive pollen allergic patients.
KW - Olive pollen allergy
KW - Proteomics
KW - Recombinant Ole e 7 allergen
KW - de novo mass spectrometry
KW - nsLTP
UR - http://www.scopus.com/inward/record.url?scp=85048379813&partnerID=8YFLogxK
U2 - 10.1016/j.jprot.2018.06.001
DO - 10.1016/j.jprot.2018.06.001
M3 - Article
C2 - 29883846
AN - SCOPUS:85048379813
SN - 1874-3919
VL - 187
SP - 39
EP - 46
JO - Journal of Proteomics
JF - Journal of Proteomics
ER -