A prostate MRI atlas of biochemical failures following cancer treatment

Mirabela Rusu, John Kurhanewicz, Ashutosh Tewari, Anant Madabhushi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations


Radical prostatectomy (RP) and radiation therapy (RT) are the most common treatment options for prostate cancer (PCa). Despite advancements in radiation delivery and surgical procedures, RP and RT can result in failure rates as high as 40% and >25%, respectively. Treatment failure is characterized by biochemical recurrence (BcR), which is defined in terms of prostate specific antigen (PSA) concentrations and its variation following treatment. PSA is expected to decrease following treatment, thereby its presence in even small concentrations (e.g 0.2 ng/ml for surgery or 2 ng/ml over the nadir PSA for radiation therapy) is indicative of treatment failure. Early identification of treatment failure may enable the use of more aggressive or neo-adjuvant therapies. Moreover, predicting failure prior to treatment may spare the patient from a procedure that is unlikely to be successful. Our goal is to identify differences on pre-treatment MRI between patients who have BcR and those who remain disease-free at 5 years post-treatment. Specifically, we focus on (1) identifying statistically significant differences in MRI intensities, (2) establishing morphological differences in prostatic anatomic structures, and (3) comparing these differences with the natural variability of prostatic structures. In order to attain these objectives, we use an anatomically constrained registration framework to construct BcR and non-BcR statistical atlases based on the pre-treatment magnetic resonance images (MRI) of the prostate. The patients included in the atlas either underwent RP or RT and were followed up for at least 5 years. The BcR atlas was constructed from a combined population of 12 pre-RT 1.5 Tesla (T) MRI and 33 pre-RP 3T MRI from patients with BcR within 5 years of treatment. Similarly, the non-BcR atlas was built based on a combined cohort of 20 pre-RT 1.5T MRI and 41 pre-RP 3T MRI from patients who remain disease-free 5 years post treatment. We chose the atlas framework as it enables the mapping of MR images from all subjects into the same canonical space, while constructing both an imaging and a morphological statistical atlas. Such co-registration allowed us to perform voxel-by-voxel comparisons of MRI intensities and capsule and central gland morphology to identify statistically significant differences between the BcR and non-BcR patient populations. To assess whether the morphological differences are valid, we performed an additional experiment where we constructed sub-population atlases by randomly sampling RT patients to construct the BcR and non-BcR atlases. Following these experiments we observed that: (1) statistically significant MRI intensity differences exist between BcR and non-BcR patients, specifically on the border of the central gland; (2) statistically significant morphological differences are visible in the prostate and central gland, specifically in the proximity of the apex, and (3) the differences between the BcR and non-BcR cohorts in terms of shape appeared to be consistent across these sub-population atlases as observed in our RT atlases.

Original languageEnglish
Title of host publicationMedical Imaging 2014
Subtitle of host publicationComputer-Aided Diagnosis
ISBN (Print)9780819498281
StatePublished - 2014
EventMedical Imaging 2014: Computer-Aided Diagnosis - San Diego, CA, United States
Duration: 18 Feb 201420 Feb 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
ISSN (Print)1605-7422


ConferenceMedical Imaging 2014: Computer-Aided Diagnosis
Country/TerritoryUnited States
CitySan Diego, CA


  • Biochemical recurrence
  • Gland morphology
  • MRI atlas
  • Prostate cancer


Dive into the research topics of 'A prostate MRI atlas of biochemical failures following cancer treatment'. Together they form a unique fingerprint.

Cite this