TY - GEN
T1 - A practical and predictive two-metric system for characterizing the color rendering properties of light sources used for architectural applications
AU - Rea, Mark S.
PY - 2010
Y1 - 2010
N2 - A source of illumination with good color properties, daylight or electric, should reveal a full range of colors, should enable good color discrimination between objects of similar spectral reflectance, and should not distort colors. We presently have only one recognized measure of color rendering in the lighting industry, color rendering index (CRI), developed in the early 1960s. However, CRI should not be used alone as a predictive measure of the color rendering properties of a light source. First, CRI is a poor predictor of color discrimination. Gamut area index (GAI), another measure of color rendering, is consistently better at predicting performance on the Farnsworth-Munsell 100 Hue test than is CRI. GAI is also better at predicting subjective judgments of "vividness" than CRI. On the other hand, when measuring the ability of a light source to display colors "naturally," neither the GAI nor the CRI performs consistently. In fact, sometimes GAI is a better predictor of "naturalness" than CRI, and sometimes the opposite is true. When GAI and CRI are used jointly in characterizing the color rendering characteristics of a light source used for illumination, high values on both metrics appear to ensure subjective impressions of both "naturalness" and "vividness." In general, this two-metric system appears to be predictive of an average individual's "preference." A priori tests of this two-metric system of color rendering were conducted, lending support to the validity of this approach for characterizing the color rendering properties of electric light sources.
AB - A source of illumination with good color properties, daylight or electric, should reveal a full range of colors, should enable good color discrimination between objects of similar spectral reflectance, and should not distort colors. We presently have only one recognized measure of color rendering in the lighting industry, color rendering index (CRI), developed in the early 1960s. However, CRI should not be used alone as a predictive measure of the color rendering properties of a light source. First, CRI is a poor predictor of color discrimination. Gamut area index (GAI), another measure of color rendering, is consistently better at predicting performance on the Farnsworth-Munsell 100 Hue test than is CRI. GAI is also better at predicting subjective judgments of "vividness" than CRI. On the other hand, when measuring the ability of a light source to display colors "naturally," neither the GAI nor the CRI performs consistently. In fact, sometimes GAI is a better predictor of "naturalness" than CRI, and sometimes the opposite is true. When GAI and CRI are used jointly in characterizing the color rendering characteristics of a light source used for illumination, high values on both metrics appear to ensure subjective impressions of both "naturalness" and "vividness." In general, this two-metric system appears to be predictive of an average individual's "preference." A priori tests of this two-metric system of color rendering were conducted, lending support to the validity of this approach for characterizing the color rendering properties of electric light sources.
KW - Color rendering
KW - LED
KW - color rendering index (CRI)
KW - correlated color temperature (CCT)
KW - daylight
KW - gamut area index (GAI)
KW - solid state lighting
UR - https://www.scopus.com/pages/publications/78049379100
U2 - 10.1117/12.868799
DO - 10.1117/12.868799
M3 - Conference contribution
AN - SCOPUS:78049379100
SN - 9780819480828
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - International Optical Design Conference 2010
T2 - International Optical Design Conference 2010
Y2 - 13 June 2010 through 17 June 2010
ER -