TY - JOUR
T1 - A novel therapeutic combination of sitagliptin and melatonin regenerates pancreatic β-cells in mouse and human islets
AU - Patel, Roma
AU - Parmar, Nishant
AU - Rathwa, Nirali
AU - Palit, Sayantani Pramanik
AU - Li, Yansui
AU - Garcia-Ocaña, Adolfo
AU - Begum, Rasheedunnisa
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/8
Y1 - 2022/8
N2 - Autoimmune-led challenge resulting in β-cell loss is responsible for the development of type 1 diabetes (T1D). Melatonin, a pineal hormone or sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, has increased β-cell mass in various diabetic models and has immunoregulatory property. Both β-cell regenerative capacity and melatonin secretion decrease with ageing. Thus, we aimed to investigate the therapeutic potential of melatonin combined with sitagliptin on β-cell regeneration under glucotoxic stress, in the streptozotocin-induced young and old diabetic mouse models, and euglycemic humanized islet transplant mouse model. Our results suggest that combination therapy of sitagliptin and melatonin show an additive effect in inducing mouse β-cell regeneration under glucotoxic stress, and in the human islet transplant mouse model. Further, in the young diabetic mouse model, the monotherapies induce β-cell transdifferentiation and reduce β-cell apoptosis whereas, in the old diabetic mouse model, melatonin and sitagliptin induce β-cell proliferation and β-cell transdifferentiation, and it also reduces β-cell apoptosis. Further, in both the models, combination therapy reduces fasting blood glucose levels, increases plasma insulin levels and glucose tolerance and promotes β-cell proliferation, β-cell transdifferentiation, and reduces β-cell apoptosis. It can be concluded that combination therapy is superior to monotherapies in ameliorating diabetic manifestations, and it can be used as a future therapy for β-cell regeneration in diabetes patients.
AB - Autoimmune-led challenge resulting in β-cell loss is responsible for the development of type 1 diabetes (T1D). Melatonin, a pineal hormone or sitagliptin, a dipeptidyl peptidase IV (DPP-IV) inhibitor, has increased β-cell mass in various diabetic models and has immunoregulatory property. Both β-cell regenerative capacity and melatonin secretion decrease with ageing. Thus, we aimed to investigate the therapeutic potential of melatonin combined with sitagliptin on β-cell regeneration under glucotoxic stress, in the streptozotocin-induced young and old diabetic mouse models, and euglycemic humanized islet transplant mouse model. Our results suggest that combination therapy of sitagliptin and melatonin show an additive effect in inducing mouse β-cell regeneration under glucotoxic stress, and in the human islet transplant mouse model. Further, in the young diabetic mouse model, the monotherapies induce β-cell transdifferentiation and reduce β-cell apoptosis whereas, in the old diabetic mouse model, melatonin and sitagliptin induce β-cell proliferation and β-cell transdifferentiation, and it also reduces β-cell apoptosis. Further, in both the models, combination therapy reduces fasting blood glucose levels, increases plasma insulin levels and glucose tolerance and promotes β-cell proliferation, β-cell transdifferentiation, and reduces β-cell apoptosis. It can be concluded that combination therapy is superior to monotherapies in ameliorating diabetic manifestations, and it can be used as a future therapy for β-cell regeneration in diabetes patients.
KW - Diabetes
KW - Glucose tolerance
KW - Melatonin
KW - Sitagliptin
KW - β-Cell regeneration
UR - http://www.scopus.com/inward/record.url?scp=85127493111&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2022.119263
DO - 10.1016/j.bbamcr.2022.119263
M3 - Article
C2 - 35364117
AN - SCOPUS:85127493111
SN - 0167-4889
VL - 1869
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 8
M1 - 119263
ER -