A Next Generation Multiscale View of Inborn Errors of Metabolism

Research output: Contribution to journalReview articlepeer-review

69 Scopus citations

Abstract

Inborn errors of metabolism (IEM) are not unlike common diseases. They often present as a spectrum of disease phenotypes that correlates poorly with the severity of the disease-causing mutations. This greatly impacts patient care and reveals fundamental gaps in our knowledge of disease modifying biology. Systems biology approaches that integrate multi-omics data into molecular networks have significantly improved our understanding of complex diseases. Similar approaches to study IEM are rare despite their complex nature. We highlight that existing common disease-derived datasets and networks can be repurposed to generate novel mechanistic insight in IEM and potentially identify candidate modifiers. While understanding disease pathophysiology will advance the IEM field, the ultimate goal should be to understand per individual how their phenotype emerges given their primary mutation on the background of their whole genome, not unlike personalized medicine. We foresee that panomics and network strategies combined with recent experimental innovations will facilitate this.

Original languageEnglish
Pages (from-to)13-26
Number of pages14
JournalCell Metabolism
Volume23
Issue number1
DOIs
StatePublished - 12 Jan 2016

Keywords

  • human genetic disease
  • metabolism
  • network biology
  • omics

Fingerprint

Dive into the research topics of 'A Next Generation Multiscale View of Inborn Errors of Metabolism'. Together they form a unique fingerprint.

Cite this