A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan

Ana Ortega-Molina, Cristina Lebrero-Fernández, Alba Sanz, Miguel Calvo-Rubio, Nerea Deleyto-Seldas, Lucía de Prado-Rivas, Ana Belén Plata-Gómez, Elena Fernández-Florido, Patricia González-García, Yurena Vivas-García, Elena Sánchez García, Osvaldo Graña-Castro, Nathan L. Price, Alejandra Aroca-Crevillén, Eduardo Caleiras, Daniel Monleón, Consuelo Borrás, María Casanova-Acebes, Rafael de Cabo, Alejo Efeyan

Research output: Contribution to journalArticlepeer-review

Abstract

The mechanistic target of rapamycin complex 1 controls cellular anabolism in response to growth factor signaling and to nutrient sufficiency signaled through the Rag GTPases. Inhibition of mTOR reproducibly extends longevity across eukaryotes. Here we report that mice that endogenously express active mutant variants of RagC exhibit multiple features of parenchymal damage that include senescence, expression of inflammatory molecules, increased myeloid inflammation with extensive features of inflammaging and a ~30% reduction in lifespan. Through bone marrow transplantation experiments, we show that myeloid cells are abnormally activated by signals emanating from dysfunctional RagC-mutant parenchyma, causing neutrophil extravasation that inflicts additional inflammatory damage. Therapeutic suppression of myeloid inflammation in aged RagC-mutant mice attenuates parenchymal damage and extends survival. Together, our findings link mildly increased nutrient signaling to limited lifespan in mammals, and support a two-component process of parenchymal damage and myeloid inflammation that together precipitate a time-dependent organ deterioration that limits longevity.

Original languageEnglish
JournalNature Aging
DOIs
StateAccepted/In press - 2024
Externally publishedYes

Fingerprint

Dive into the research topics of 'A mild increase in nutrient signaling to mTORC1 in mice leads to parenchymal damage, myeloid inflammation and shortened lifespan'. Together they form a unique fingerprint.

Cite this