A landmark-based nonlinear elasticity model for mouse atlas registration

T. Lin, E. F. Lee, I. Dinov, C. Le Guyader, P. Thompson, A. W. Toga, L. A. Vese

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

This paper is devoted to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions. We use a nonlinear elasticity regularization allowing large deformations, guided by an intensity-based data fidelity term and by landmarks. We overcome the difficulty of minimizing the nonlinear elasticity functional by introducing an additional variable v ≃ ∇u, where u is the displacement. Thus, in the obtained Euler-Lagrange equation, the nonlinearity is no longer in the derivatives of the unknown, u. Experimental results show gene expression data mapped to a mouse atlas for a standard L2 data fidelity term in the presence of landmarks. We also present comparisons with biharmonic regularization. An advantage of the proposed nonlinear elasticity model is that usually no regridding is necessary, while keeping the data term, regularization term and landmark term in a unified minimization approach.

Original languageEnglish
Title of host publication2008 5th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, Proceedings, ISBI
Pages788-791
Number of pages4
DOIs
StatePublished - 2008
Externally publishedYes
Event2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI - Paris, France
Duration: 14 May 200817 May 2008

Publication series

Name2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Proceedings, ISBI

Conference

Conference2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI
Country/TerritoryFrance
CityParis
Period14/05/0817/05/08

Keywords

  • Gene expression
  • Landmarks
  • Mouse atlas
  • Nonlinear elasticity
  • Registration

Fingerprint

Dive into the research topics of 'A landmark-based nonlinear elasticity model for mouse atlas registration'. Together they form a unique fingerprint.

Cite this