A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek, Ghislain Rocheleau, Johan Rung, Christian Dina, Lishuang Shen, David Serre, Philippe Boutin, Daniel Vincent, Alexandre Belisle, Samy Hadjadj, Beverley Balkau, Barbara Heude, Guillaume Charpentier, Thomas J. Hudson, Alexandre Montpetit, Alexey V. Pshezhetsky, Marc Prentki, Barry I. Posner, David J. Balding, David MeyreConstantin Polychronakos, Philippe Froguel

Research output: Contribution to journalArticlepeer-review

2470 Scopus citations

Abstract

Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case-control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing β-cells, and two linkage disequilibrium blocks that contain genes potentially involved in β-cell development or function (IDE-KIF11-HHEX and EXT2-ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.

Original languageEnglish
Pages (from-to)881-885
Number of pages5
JournalNature
Volume445
Issue number7130
DOIs
StatePublished - 22 Feb 2007
Externally publishedYes

Fingerprint

Dive into the research topics of 'A genome-wide association study identifies novel risk loci for type 2 diabetes'. Together they form a unique fingerprint.

Cite this