TY - JOUR
T1 - A functional role for Nlrp6 in intestinal inflammation and tumorigenesis
AU - Chen, Grace Y.
AU - Liu, Maochang
AU - Wang, Fuyuan
AU - Bertin, John
AU - Núñez, Gabriel
PY - 2011/6/15
Y1 - 2011/6/15
N2 - The nucleotide-binding oligomerization domain-like receptor (NLR) family member, Nlrp6, has been implicated in inflammasome signaling to activate caspase-1, which is essential for the production of mature IL-1b and IL-18. However, a function for Nlrp6 in vivo has never been demonstrated. Due to the relative high expression of Nlrp6 in intestinal tissue, we hypothesized that Nlrp6 has a role in intestinal homeostasis. Indeed, Nlrp6-deficient mice are more susceptible to chemically induced colitis as well as colitis-induced tumorigenesis than wild-type (WT) mice. Nlrp6-deficient mice exhibited significantly more inflammation within the colon than WT mice after dextran sulfate sodium treatment. Their inability to resolve inflammation and repair damaged epithelium as efficiently as WT mice resulted in prolonged increases in epithelial proliferative activity that likely underlie the increased propensity for tumors in these mice during chronic inflammation. We further show that the activity of Nlrp6 in hematopoietic cells is critical for protection against inflammation-related colon tumorigenesis. This study highlights the importance of NLR function in maintaining intestinal homeostasis to prevent the development of aberrant inflammation and tumor development within the colon.
AB - The nucleotide-binding oligomerization domain-like receptor (NLR) family member, Nlrp6, has been implicated in inflammasome signaling to activate caspase-1, which is essential for the production of mature IL-1b and IL-18. However, a function for Nlrp6 in vivo has never been demonstrated. Due to the relative high expression of Nlrp6 in intestinal tissue, we hypothesized that Nlrp6 has a role in intestinal homeostasis. Indeed, Nlrp6-deficient mice are more susceptible to chemically induced colitis as well as colitis-induced tumorigenesis than wild-type (WT) mice. Nlrp6-deficient mice exhibited significantly more inflammation within the colon than WT mice after dextran sulfate sodium treatment. Their inability to resolve inflammation and repair damaged epithelium as efficiently as WT mice resulted in prolonged increases in epithelial proliferative activity that likely underlie the increased propensity for tumors in these mice during chronic inflammation. We further show that the activity of Nlrp6 in hematopoietic cells is critical for protection against inflammation-related colon tumorigenesis. This study highlights the importance of NLR function in maintaining intestinal homeostasis to prevent the development of aberrant inflammation and tumor development within the colon.
UR - http://www.scopus.com/inward/record.url?scp=79959540809&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.1100412
DO - 10.4049/jimmunol.1100412
M3 - Article
C2 - 21543645
AN - SCOPUS:79959540809
SN - 0022-1767
VL - 186
SP - 7187
EP - 7194
JO - Journal of Immunology
JF - Journal of Immunology
IS - 12
ER -