TY - JOUR
T1 - A family with autism and rare copy number variants disrupting the Duchenne/Becker muscular dystrophy gene DMD and TRPM3
AU - Pagnamenta, Alistair T.
AU - Holt, Richard
AU - Yusuf, Mohammed
AU - Pinto, Dalila
AU - Wing, Kirsty
AU - Betancur, Catalina
AU - Scherer, Stephen W.
AU - Volpi, Emanuela V.
AU - Monaco, Anthony P.
N1 - Funding Information:
Acknowledgements Funding for this work was from the Nancy Lurie Marks Family Foundation, the Simons Foundation, Autistica and the Wellcome Trust (core award, grant number 075491/Z/04). BAC and fosmid clones were obtained as a gift from the Wellcome Trust Sanger Institute. The authors gratefully acknowledge the families participating in the study and the international Autism Genome Project consortium for sharing data and ideas. ATP is currently supported by the NIHR Biomedical Research Centre. DP is supported by fellowships from the Royal Netherlands Academy of Arts and Sciences (TMF/DA/5801) and the Netherlands Organization for Scientific Research (Rubicon 825.06.031) and SWS is the GlaxoSmithKline Pathfinder Chair in Genetics and Genomics at the University of Toronto and the Hospital for Sick Children. We also thank Samantha Knight (NIHR Biomedical Research Centre, Oxford and The Wellcome Trust Centre for Human Genetics, Oxford) and Jane Kaye (Centre for Health, Law and Emerging Technologies, University of Oxford) for useful discussions. Raw genotype data for family 3019 is available from the NCBI Gene Omnibus Expression and dbGaP (accession codes GSE6754: for Affymetrix 10K and phs000267.v1.p1: for 1M SNP data).
PY - 2011/6
Y1 - 2011/6
N2 - Autism spectrum disorder is a genetically complex and clinically heterogeneous neurodevelopmental disorder. A recent study by the Autism Genome Project (AGP) used 1M single-nucleotide polymorphism arrays to show that rare genic copy number variants (CNVs), possibly acting in tandem, play a significant role in the genetic aetiology of this condition. In this study, we describe the phenotypic and genomic characterisation of a multiplex autism family from the AGP study that was found to harbour a duplication of exons 31-44 of the Duchenne/Becker muscular dystrophy gene DMD and also a rare deletion involving exons 1-9 of TRPM3. Further characterisation of these extremely rare CNVs was carried out using quantitative PCR, fluorescent in situ hybridisation, long-range PCR amplification and sequencing of junction fragments. The maternal chrX:32,097,213-32,321,945 tandem duplication and paternal chr9:72,480,413-73,064,196 deletion (NCBI build 36 coordinates) were transmitted to both affected boys, potentially signifying a multi-hit mechanism. The DMD reading frame rule predicts a Becker phenotype, characterised by later onset and milder symptoms. When last evaluated, neither child had developed signs of muscular dystrophy. These data are consistent with a degree of comorbidity between autism and muscular dystrophy and suggest that genomic background as well as the position of the mutation within the DMD gene may impact on the neurological correlates of Duchenne/Becker muscular dystrophy. Finally, communicating unexpected findings such as these back to families raises a number of ethical questions, which are discussed.
AB - Autism spectrum disorder is a genetically complex and clinically heterogeneous neurodevelopmental disorder. A recent study by the Autism Genome Project (AGP) used 1M single-nucleotide polymorphism arrays to show that rare genic copy number variants (CNVs), possibly acting in tandem, play a significant role in the genetic aetiology of this condition. In this study, we describe the phenotypic and genomic characterisation of a multiplex autism family from the AGP study that was found to harbour a duplication of exons 31-44 of the Duchenne/Becker muscular dystrophy gene DMD and also a rare deletion involving exons 1-9 of TRPM3. Further characterisation of these extremely rare CNVs was carried out using quantitative PCR, fluorescent in situ hybridisation, long-range PCR amplification and sequencing of junction fragments. The maternal chrX:32,097,213-32,321,945 tandem duplication and paternal chr9:72,480,413-73,064,196 deletion (NCBI build 36 coordinates) were transmitted to both affected boys, potentially signifying a multi-hit mechanism. The DMD reading frame rule predicts a Becker phenotype, characterised by later onset and milder symptoms. When last evaluated, neither child had developed signs of muscular dystrophy. These data are consistent with a degree of comorbidity between autism and muscular dystrophy and suggest that genomic background as well as the position of the mutation within the DMD gene may impact on the neurological correlates of Duchenne/Becker muscular dystrophy. Finally, communicating unexpected findings such as these back to families raises a number of ethical questions, which are discussed.
KW - Autism
KW - Becker
KW - CNV
KW - Comorbid
KW - DMD
KW - Duchenne
UR - http://www.scopus.com/inward/record.url?scp=79958042272&partnerID=8YFLogxK
U2 - 10.1007/s11689-011-9076-5
DO - 10.1007/s11689-011-9076-5
M3 - Article
AN - SCOPUS:79958042272
SN - 1866-1947
VL - 3
SP - 124
EP - 131
JO - Journal of Neurodevelopmental Disorders
JF - Journal of Neurodevelopmental Disorders
IS - 2
ER -