TY - JOUR
T1 - A catalytically and genetically optimized β-lactamase-matrix based assay for sensitive, specific, and higher throughput analysis of native henipavirus entry characteristics
AU - Wolf, Mike C.
AU - Wang, Yao
AU - Freiberg, Alexander N.
AU - Aguilar, Hector C.
AU - Holbrook, Michael R.
AU - Lee, Benhur
N1 - Funding Information:
We thank members of the Lee lab, especially Jennifer Fulcher for technical assistance and Frederic Vigant for quintessential review of the manuscript. This work was supported by NIH grants AI069317, AI060694, AI070495, and AI059051 to B.L. M.C.W. was supported by NIH grant AI07323 and the UCLA Warsaw Fellowship. We greatly appreciate all the time and wonderful assistance given from Stephanie Matyas at the Center For Aids Research flow cytometry core supported by NIH grants CA16042 and AI28697.
PY - 2009
Y1 - 2009
N2 - Nipah virus (NiV) and Hendra virus (HeV) are the only paramyxoviruses requiring Biosafety Level 4 (BSL-4) containment. Thus, study of henipavirus entry at less than BSL-4 conditions necessitates the use of cell-cell fusion or pseudotyped reporter virus assays. Yet, these surrogate assays may not fully emulate the biological properties unique to the virus being studied. Thus, we developed a henipaviral entry assay based on a β-lactamase-Nipah Matrix (βla-M) fusion protein. We first codon-optimized the bacterial βla and the NiV-M genes to ensure efficient expression in mammalian cells. The βla-M construct was able to bud and form virus-like particles (VLPs) that morphologically resembled paramyxoviruses. βla-M efficiently incorporated both NiV and HeV fusion and attachment glycoproteins. Entry of these VLPs was detected by cytosolic delivery of βla-M, resulting in enzymatic and fluorescent conversion of the pre-loaded CCF2-AM substrate. Soluble henipavirus receptors (ephrinB2) or antibodies against the F and/or G proteins blocked VLP entry. Additionally, a Y105W mutation engineered into the catalytic site of βla increased the sensitivity of our βla-M based infection assays by 2-fold. In toto, these methods will provide a more biologically relevant assay for studying henipavirus entry at less than BSL-4 conditions.
AB - Nipah virus (NiV) and Hendra virus (HeV) are the only paramyxoviruses requiring Biosafety Level 4 (BSL-4) containment. Thus, study of henipavirus entry at less than BSL-4 conditions necessitates the use of cell-cell fusion or pseudotyped reporter virus assays. Yet, these surrogate assays may not fully emulate the biological properties unique to the virus being studied. Thus, we developed a henipaviral entry assay based on a β-lactamase-Nipah Matrix (βla-M) fusion protein. We first codon-optimized the bacterial βla and the NiV-M genes to ensure efficient expression in mammalian cells. The βla-M construct was able to bud and form virus-like particles (VLPs) that morphologically resembled paramyxoviruses. βla-M efficiently incorporated both NiV and HeV fusion and attachment glycoproteins. Entry of these VLPs was detected by cytosolic delivery of βla-M, resulting in enzymatic and fluorescent conversion of the pre-loaded CCF2-AM substrate. Soluble henipavirus receptors (ephrinB2) or antibodies against the F and/or G proteins blocked VLP entry. Additionally, a Y105W mutation engineered into the catalytic site of βla increased the sensitivity of our βla-M based infection assays by 2-fold. In toto, these methods will provide a more biologically relevant assay for studying henipavirus entry at less than BSL-4 conditions.
UR - http://www.scopus.com/inward/record.url?scp=69049114100&partnerID=8YFLogxK
U2 - 10.1186/1743-422X-6-119
DO - 10.1186/1743-422X-6-119
M3 - Article
C2 - 19646266
AN - SCOPUS:69049114100
SN - 1743-422X
VL - 6
JO - Virology Journal
JF - Virology Journal
M1 - 119
ER -