A C-terminal mutation of ATP1A3 underscores the crucial role of sodium affinity in the pathophysiology of rapid-onset dystonia-parkinsonism

Patricia Blanco-Arias, Anja P. Einholm, Hafsa Mamsa, Carla Concheiro, Hugo Gutiérrez-de-Terán, Jesús Romero, Mads S. Toustrup-Jensen, Ángel Carracedo, Joanna C. Jen, Bente Vilsen, María Jesús Sobrido

Research output: Contribution to journalArticlepeer-review

57 Scopus citations

Abstract

The Na+/K+-ATPases are ion pumps of fundamental importance in maintaining the electrochemical gradient essential for neuronal survival and function. Mutations in ATP1A3 encoding the α3 isoform cause rapid-onset dystonia-parkinsonism (RDP). We report a de novo ATP1A3 mutation in a patient with typical RDP, consisting of an in-frame insertion of a tyrosine residue at the very C terminus of the Na+K+-ATPase α3-subunit-the first reported RDP mutation in the C terminus of the protein. Expression studies revealed that there is no defect in the biogenesis or plasma membrane targeting, although cells expressing the mutant protein showed decreased survival in response to ouabain challenge. Functional analysis demonstrated a drastic reduction in Na+ affinity in the mutant, which can be understood by structural modelling of the E1 and E2 conformations of the wild-type and mutant enzymes on the basis of the strategic location of the C terminus in relation to the third Na+ binding site. The dramatic clinical presentation, together with the biochemical findings, provides both in vivo and in vitro evidence for a crucial role of the C terminus of the α-subunit in the function of the Na+K+- ATPase and a key impact of Na+ affinity in the pathophysiology of RDP.

Original languageEnglish
Pages (from-to)2370-2377
Number of pages8
JournalHuman Molecular Genetics
Volume18
Issue number13
DOIs
StatePublished - 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'A C-terminal mutation of ATP1A3 underscores the crucial role of sodium affinity in the pathophysiology of rapid-onset dystonia-parkinsonism'. Together they form a unique fingerprint.

Cite this