Abstract
A method is presented for high-resolution 3D imaging of the whole lung using inhaled hyperpolarized (HP) He-3 MR with multiple half-echo radial trajectories that can accelerate imaging through undersampling. A multiple half-echo radial trajectory can be used to reduce the level of artifact for under-sampled 3D projection reconstruction (PR) imaging by increasing the amount of data acquired per unit time for HP He-3 lung imaging. The point spread functions (PSFs) for breath-held He-3 MRI using multiple half-echo trajectories were evaluated using simulations to predict the effects of T2* and gas diffusion on image quality. Results from PSF simulations were consistent with imaging results in volunteer studies showing improved image quality with increasing number of echoes using up to 8 half-echoes. The 8-half-echo acquisition is shown to accommodate lost breath-holds as short as 6 sec using a retrospective reconstruction at reduced resolution and also to allow reduced breath-hold time compared with an equivalent Cartesian trajectory. Furthermore, preliminary results from a 3D dynamic inhalation-exhalation maneuver are demonstrated using the 8-half-echo trajectory. Results demonstrate the first high-resolution 3D PR imaging of ventilation and respiratory dynamics in humans using HP He-3 MR.
Original language | English |
---|---|
Pages (from-to) | 1062-1071 |
Number of pages | 10 |
Journal | Magnetic Resonance in Medicine |
Volume | 59 |
Issue number | 5 |
DOIs | |
State | Published - May 2008 |
Externally published | Yes |
Keywords
- Hyperpolarized helium-3
- Lung
- Multi-echo
- Radial projection acquisition
- Ventilation