Δnp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer

Sushil Kumar, David W. Wilkes, Nina Samuel, Mario Andres Blanco, Anupma Nayak, Kevin Alicea-Torres, Christian Gluck, Satrajit Sinha, Dmitry Gabrilovich, Rumela Chakrabarti

Research output: Contribution to journalArticlepeer-review

112 Scopus citations

Abstract

Triple-negative breast cancer (TNBC) is particularly aggressive, with enhanced incidence of tumor relapse, resistance to chemotherapy, and metastases. As the mechanistic basis for this aggressive phenotype is unclear, treatment options are limited. Here, we showed an increased population of myeloid-derived immunosuppressor cells (MDSCs) in TNBC patients compared with non-TNBC patients. We found that high levels of the transcription factor ΔNp63 correlate with an increased number of MDSCs in basal TNBC patients, and that ΔNp63 promotes tumor growth, progression, and metastasis in human and mouse TNBC cells. Furthermore, we showed that MDSC recruitment to the primary tumor and metastatic sites occurs via direct ΔNp63-dependent activation of the chemokines CXCL2 and CCL22. CXCR2/CCR4 inhibitors reduced MDSC recruitment, angiogenesis, and metastasis, highlighting a novel treatment option for this subset of TNBC patients. Finally, we found that MDSCs secrete prometastatic factors such as MMP9 and chitinase 3-like 1 to promote TNBC cancer stem cell function, thereby identifying a nonimmunologic role for MDSCs in promoting TNBC progression. These findings identify a unique crosstalk between ΔNp63+ TNBC cells and MDSCs that promotes tumor progression and metastasis, which could be exploited in future combined immunotherapy/chemotherapy strategies for TNBC patients.

Original languageEnglish
Pages (from-to)5095-5109
Number of pages15
JournalJournal of Clinical Investigation
Volume128
Issue number11
DOIs
StatePublished - 1 Nov 2018
Externally publishedYes

Fingerprint

Dive into the research topics of 'Δnp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer'. Together they form a unique fingerprint.

Cite this