Project Details


Presynaptic GABAB receptor (GABABR) heterodimers are composed of GB1a/GB2 subunits and critically influence synaptic and cognitive functions. In the frame of the BSF grant, we explored local GABABR activation by integrating optical tools for monitoring receptor conformation and synaptic vesicle release at individual presynaptic boutons of hippocampal neurons. Utilizing fluorescence resonance energy transfer (FRET) spectroscopy, we detected a wide range of FRET values for CFP/YFP-tagged GB1a/GB2 receptors that negatively correlated with release probabilities at single synapses. High FRET of GABABRs associated with low release probability. Notably, pharmacological manipulations that either reduced or increased basal receptor activation decreased inter-synapse variability of GB1a/GB2 receptor conformation. Despite variability along axons, presynaptic GABABR tone was dendrite-specific, having a greater impact on synapses at highly innervated proximal branches. Prolonged neuronal inactivity reduced basal receptor activation, leading to homeostatic augmentation of release probability. Our findings suggest that local variations in basal GABA concentration are a major determinant of GB1a/GB2 conformational variability, which contributes to heterogeneity of neurotransmitter release at hippocampal synapses. These data have been recently published in Neuron1.

1. Laviv T, Riven I, Dolev I, Vertkin I, Balana B, et al. (2010) Basal GABA Regulates GABA(B)R Conformation and Release Probability at Single Hippocampal Synapses. Neuron 67: 253-267.

Effective start/end date1/01/07 → …


  • United States-Israel Binational Science Foundation: $39,147.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.