Role of DISC1 and NRG1 in oligodendrocyte development in schizophrenia

Project Details

Description

DESCRIPTION (provided by applicant): Schizophrenia (SZ) has been characterized as a disconnectivity syndrome where communication between different neurons, brain circuits and brain regions is disrupted leading to failures of appropriate/coherent information processing. In order to maintain functional processing and rapid neurotransmission at all levels of the nervous system, neurons require adequate myelination of their axons. The success of myelination depends on coordinated interplay of the extrinsic and intrinsic signals that mediate recruitment, differentiation and migration of oligodendrocyte precursor cells (OPC). In prior research, now replicated by many groups, we showed that SZ was characterized by significant reductions in the expression of multiple myelin and oligodendrocyte (OLG) associated genes and proteins. We also showed that the myelin related expression deficits in SZ are associated with the failure of execution of the normal cell-cycle arrest in postmitotic OLGs that may adversely affects myelin function. Genomic translocation on chromosome 1q42 associated with SZ that interrupts the disrupted-In-schizophrenia-1 gene (DISC1) may produce truncated and nonfunctional DISC1 protein. Our recent studies in transgenic mice with neuron exclusive expression of truncated human DISC1 (DhDISC1) have re- veal strong dysregulation of markers of OPC and OLGs along with cell cycle genes throughout development and adulthood suggesting that DhDISC1 can exert a major influence on proliferation and migration of oligoden drocyte precursors, their differentiation into OLGs and ultimately OLG function. The current proposal aims to gain deeper understanding into the mechanisms that contribute to the OLG dysfunction in SZ. These aims include: (1) assessing effects of neuron-exclusive DhDISC1 on migration, proliferation and differentiation of glial progenitor cells in transgenic mice and determining developmental population of glial progenitor cells targeted by DhDISC1 expression; (2) examining molecular pathways (elicited by NRG1, IGF1 and Wnt) that may mediate the effect of DhDISC1 on migration, proliferation and differentiation of OPC by studying gene/protein expression and phosphorylation of critical effectors of the pathways; (3) examining regional changes in expression of proteins connecting functionally defective DISC1 to OLG-related dysfunction in SZ in human postmortem brains and determine their disease relevance. Our approach is to understand better OLG development and function in SZ through an iterative process of identifying neurobiological abnormalities in SZ, using transgenic animal models to uncover the mechanisms responsible and validating the findings from animal models against real-world outcomes in the human brain and guide to possible preventive or interventional strategies with direct public health impact.
StatusFinished
Effective start/end date1/04/1328/02/18

Funding

  • NATIONAL INSTITUTE OF MENTAL HEALTH: $303,178.00
  • NATIONAL INSTITUTE OF MENTAL HEALTH: $1,489,687.00
  • NATIONAL INSTITUTE OF MENTAL HEALTH: $296,348.00
  • NATIONAL INSTITUTE OF MENTAL HEALTH: $297,155.00
  • NATIONAL INSTITUTE OF MENTAL HEALTH: $296,909.00

Fingerprint

Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.