Project Details


DESCRIPTION (provided by applicant): Cognitive impairment in normal aging and neurodegenerative disease is accompanied by altered morphologies on multiple scales: from the fine-grained geometry of individual spines to the global topologies of multi-neuron and vasculature networks that are distorted by space-occupying histopathologic lesions. A mechanistic understanding of the role of these structural changes in producing the observed cognitive deficits requires accurate 3D representations of neuronal morphology, and realistic biophysical modeling that can directly relate structural changes on multiple scales to altered neuronal firing patterns. To date however, no tools capable of resolving, digitizing and analyzing neuronal morphology on both local and global scales, and in true 3D, have been available. The central goal of this project is development of an automated analysis system for digitization, 3D reconstruction and geometric analysis of detailed and accurate neuronal morphology, capable of handling morphologic details on scales spanning local spine geometry through complex tree topology to the gross spatial arrangement of multi-neuron networks. As a specific example we will analyze morphologic changes in a Tg2576 mouse model of Alzheimer's disease (AD), in which amyloid deposition, altered cortical microvasculature and neural abnormalities provide easily identifiable examples of pathologic lesions. Four Specific Aims will address this broad objective: (1) To develop a semi-automated system for 3D tree extraction and spine analysis from laser scanning microscopy (LSM) imaged data, with sub-voxel resolution for accurate neuronal morphometry at the finest scales;(2) to image and digitize in 3D individual neurons, multineuron and vasculature networks, and senile plaques from human and Tg2576 mouse models of AD;(3) to develop tools for global analysis of spatially complex cellular structures in 3D;(4) to distribute and maintain all software, and develop a database-driven web repository for distribution of digitized neurons and networks. By providing true 3D morphometry of complex neural structures on multiple scales, the tools developed in this study will enable future multiscale biophysical modeling studies capable of testing hypothesized mechanisms by which altered dendritic structure, spine geometry and network branching patterns in normal aging and neurodegenerative disease determine pathologies of working memory and cognitive function. Such studies will provide crucial insight into general mechanisms of memory induction and maintenance that underlie normal cognitive function, its dysfunction in diseased states, and potential mechanisms for its restoration.
Effective start/end date1/09/0531/08/10




Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.