Project Details
Description
Project Summary: An imaging modality that allows for fast, simultaneous, noninvasive probing of both 3D
cellular resolution retinal morphology by optical coherence tomography (OCT) and molecular-specific functions
by autofluorescence (AF) could substantially improve both basic understanding and the early diagnosis of age-
related macular degeneration (AMD), the leading cause of blindness in the developed world. The evaluation and
management of AMD utilize several investigation modalities, but advancements in OCT technology have
significantly contributed to better understanding of the disease, and have helped with monitoring progression
and therapeutic efficacy. However, due to optical aberrations of the eye, the transverse resolution of conventional
OCT is generally limited to 10-15 µm, inadequate for visualizing individual retinal cells in vivo. The integration of
adaptive optics (AO) into OCT has demonstrated an immense success in mitigating these aberrations. Among
various AO-OCT techniques, computation-based AO (CAO) becomes the spotlight of research because it shows
unique advantages in data postprocessing flexibility and a reduced system cost. However, CAO is extremely
sensitive to phase stability. The rapid motion of the eye can easily scramble the phase of reflected photons,
restricting imaging to a single en-face layer.
To overcome this problem, we will integrate a snapshot hyperspectral imaging method, Image Mapping
Spectrometry (IMS), with full-field spectral-domain OCT. The integrated system will enable 3D imaging of retina
within a single camera exposure. Next, to improve resolution in 3D, we will adapt an established CAO algorithm
to correct for wavefront aberrations and improve transverse resolution to 2 µm. The resultant method, which we
term snapshot ultra-high-resolution OCT, will allow an acquisition of a quarter million A-scans simultaneously.
Given a typical flash illumination duration (4 µs), the equivalent A-scan rate is 62.5 GHz, which is approximately
three orders of magnitude faster than the state-of-the-art methods. Furthermore, to expand the system’s
functionality to molecular imaging, we will add a second IMS imaging channel for simultaneous hyperspectral
imaging of retinal pigment epithelium (RPE) autofluorescence, enabling spectral biopsy of the RPE and subRPE
lesions such as drusen, the hallmark lesion of early AMD. The resultant dual-channel OCT/AF system will be the
first imaging modality that can provide both structural and molecular information about the retina in vivo and in
3D. We envision such a system would shift the landscape of AMD evaluation and management. The insights so
obtained will be of high value in clinical diagnosis and treatment. In addition, such a system will accelerate
translational research with sensitive and early outcome testing of prospective therapeutic agents, saving sight
and thereby providing enormous benefit to society.
Status | Active |
---|---|
Effective start/end date | 1/05/19 → 28/02/23 |
Funding
- NATIONAL EYE INSTITUTE: $445,995.00
- NATIONAL EYE INSTITUTE: $464,646.00
- NATIONAL EYE INSTITUTE: $1,282,123.00
Fingerprint
Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.